RELIC: Reinforcement Learning Based Ising Optimization via Graph Compression

Duy Do Le¹ Truong-Son Hy² Thang N. Dinh³

IEEE QCRL 2025 Workshop

Presenter: Phuong Cao Cong³

¹Independent Researcher

²The University of Alabama at Birmingham

³Virginia Commonwealth University

Agenda

Introduction

Method

 ${\sf Experiments}$

Introduction

Ising Model

$$E(s) = \sum_{(i,j)\in E} J_{ij} s_i s_j + \sum_i h_i s_i$$

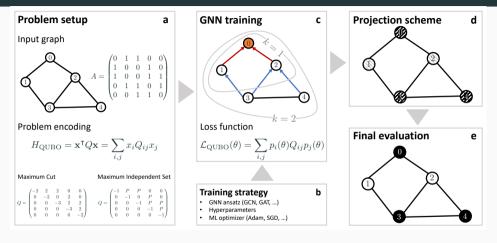
- **Problem:** minimize energy over spin configurations $s_i \in \{-1, +1\}$
- A PI-encoding framework for most NP-complete combinatorial optimization problems
 - Traveling Salesman
 - Portfolio optimization
 - Molecular docking
 - Next-G MIMO Processing

3

Ising Solvers

- Exact methods: GUROBI, CPLEX, MOSEK
 - Exponential-time worst case due to the NP-hardness
- Classical heuristics: Simulated Annealing, Tabu Search, Genetic Algorithms
- Quantum & Quantum-inspired solvers: Quantum annealing (QA),
 Gate-based QAOA, Digital Annealers
- Neural combinatorial solvers: Learn heuristics and or policies that generalize across instances using Deep Learning
 - Problem-specific solvers:
 - Pointer Networks [TSP, VRP]: NeurIPS 2015 SL/RL sequence models
 - Policy gradient to learn heuristics [TSP, Knapsack] (Bello et al., ICLR 2017)
 - Transformer-based RL solvers [TSP, VRP] (Kool et al., ICLR 2019)
 - General Ising/QUBO Solver:
 - Physical-inspired GNN (PI-GNN) (Schuetz et al. Nature Machine Intel. 22)

Physics-Inspired Graph Neural Network



PI-GNN approach for solving QUBO. Schuetz et al. Machine Intelligence 2022 Expensive Inference time to find node embedding!

Method

Our Approach: RELIC - Reinforcement Learning for Ising Compression

- Neural Combinatorial Solver for (general) Ising Model
- Policy gradient (REINFORCE) to learn optimal edge contraction
- ullet For an n-size Ising, a sequence of n-1 edge contractions induces a solution
- Policy trained via REINFORCE with inexpensive final rewards
 - unsupervised learning
- Generalizes to unseen graph topologies of various sizes

Compression Actions

Merge (aligned spins at ground states): contract (u, v), rewire neighbors of v:

$$J_{uw} \leftarrow J_{uw} + J_{vw}, \quad \forall w \in \mathcal{N}(v) \setminus \{u\}$$

offset \leftarrow offset $+ J_{uv}$

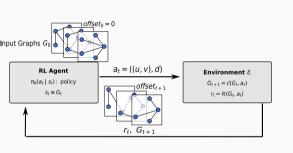
Flip-Merge (anti-aligned spins at ground states): negate v's couplings, then merge:

$$J_{vw} \leftarrow -J_{vw}, \quad \forall w \in \mathcal{N}(v),$$

then apply as above.

▶ Preserve energy (up to an offset).

RL Formulation



State s_t : current graph $G_t = (V_t, E_t)$ **Actions** $a_t = ((u, v), d)$: choose edge (u, v) and action $d \in \{merge, flip-merge\}$. **Transition**: apply contraction, update G_{t+1} and offset_{t+1}.

Horizon: $T = |V_0| - 1$ for full compression.

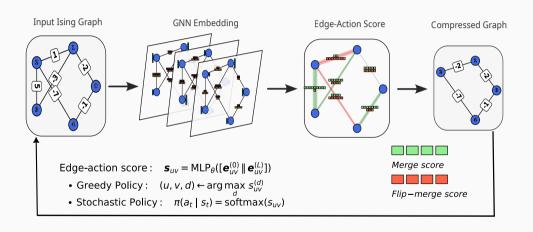
Reward:

$$r_T = -(\text{offset}_T + E_{\text{final}} - b)$$

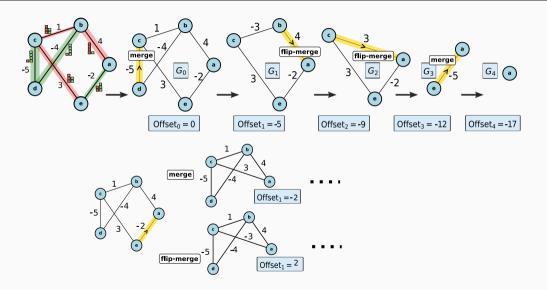
= $-(\text{offset}_T - b),$

with baseline b for variance reduction and, $E_{\rm final}=0$ as fully-compressed into a node.

Policy Architecture



Policy Architecture



Training Details

Objective (policy gradient):

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (r_T - b_t) \right].$$

Baselines: greedy rollout; stochastic average of multiple rollouts.

Exploration: ε -greedy schedule.

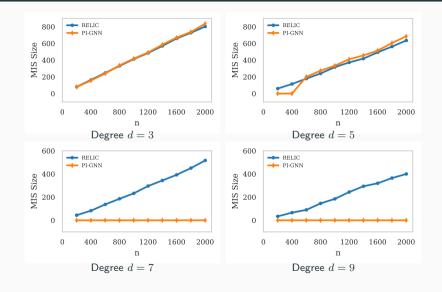
Stabilization: reward normalization, gradient clipping, mini-batch updates.

Experiments

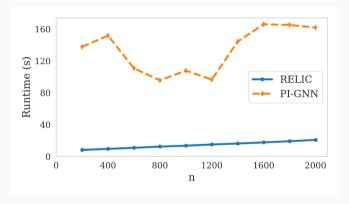
Experimental Setup

Training data	5,000 graphs, $n=25$ (ER, BA, WS), $J_{ij}\sim \mathcal{U}[-5,5]$, $h_i=0$
Policy	3 MP layers, edge-action readout
Tasks	Ising generated from Maximmum Independent Set (MIS) [?]
Metrics	MIS size (higher is better), runtime scaling
Hardware	NVIDIA RTX 3060
Method	RELIC and PI-GNN

Results: MIS Quality



Results: Runtime Scaling



RELIC exhibits linear scaling and large speedups vs. PI-GNN.

Summary

- Contribution:
 - Neural Combinatorial Solver to solve (general) Ising model
 - Generalize well to Ising instances of large scale
- Limitation and future work
 - Benchmark on Ising from various combinatorial optimization problems
 - Include comparisons with more classical solvers

THANKS!