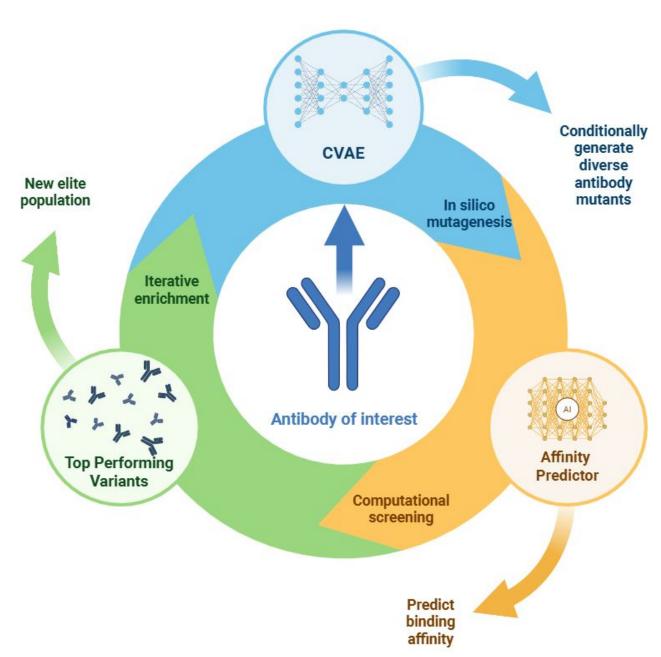
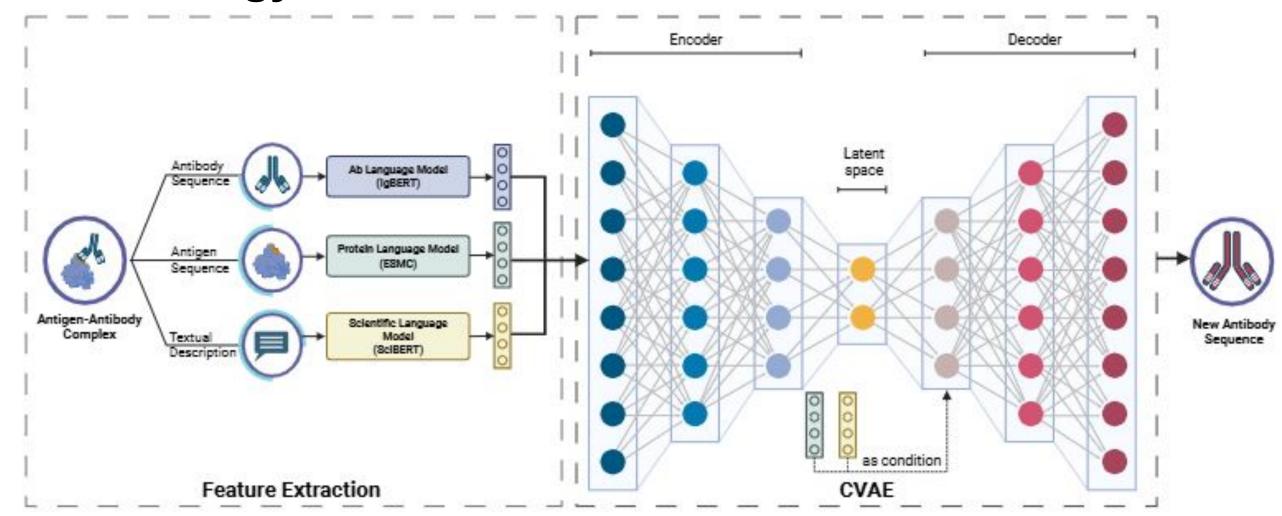
TeBaAb: <u>Text-Based Antigen-Conditioned</u> <u>Antibody Redesign via Directed Evolution</u>


Cuong Manh Nguyen, Huy-Hoang Do-Huu, Viet Thanh Duy Nguyen, Truong-Son Hy

University of Alabama at Birmingham Birmingham, AL 35294, United States

Introduction


The TeBaAb pipeline: a Conditional Variational Autoencoder (CVAE) generates candidate sequences conditioned on antigen sequences and textual descriptions, a two-stage affinity predictor evaluates binding strength, top variants are iteratively fed back into the CVAE, forming an in-silico directed evolution loop. This process yields antibodies with enhanced binding affinity while maintaining structural integrity.

Dataset: AbDes - 7,684 samples

A novel dataset of antibody-antigen complexes with descriptive annotations, structures, and binding affinities.

Antibody Sequence	Antigen	Description	Binding Affinity (∆G, kJ/mol)
QVQLV QS ALT	VVKFMDVY	Vascular endothelial growth factor in complex with a neutralizing antibody, classified as an immune system, derived from mus musculus and expressed in escherichia coli, forms a Hetero 6-mer with Cyclic - C2 symmetry.	-11.55
QVQLQ QV QLQ	KVFGRCEL	Hen egg white lysozyme, d18a mutant, in complex with mouse monoclonal antibody d1.3, classified as a complex (immunoglobulin/hydrolase), derived from mus musculus and expressed in escherichia coli, forms a Hetero 3-mer with Asymmetric - C1 symmetry, and has pseudo-symmetry of Asymmetric - C1 with Hetero 3-mer stoichiometry.	-10.45
QIQLVQ DI VMT	IRDFNNLT	Refined crystal structure of the influenza virus n9 neuraminidase-nc41 fab complex, classified as a hydrolase(o-glycosyl), derived from influenza a virus (a/tern/australia/g70c/1975(h11n9)), forms a Hetero 12-mer with Cyclic - C4 symmetry.	-11.02

Methodology

The CVAE integrates antibody embeddings (IgBERT), antigen embeddings (ESMC), and textual description embeddings (SciBERT) to generate antibody sequences. The encoder produces a latent distribution, and the transformer-based decoder reconstructs new antibody sequences conditioned on both antigen sequences and textual descriptions, enabling antigen-specific and text-guided antibody design.

Algorithm 1 TeBaAb In Silico Directed Evolution

Input: Initial antibody set S_0 , antigen sequence A, text description D

Number of generations G, top-K selection size, mutation batch size B

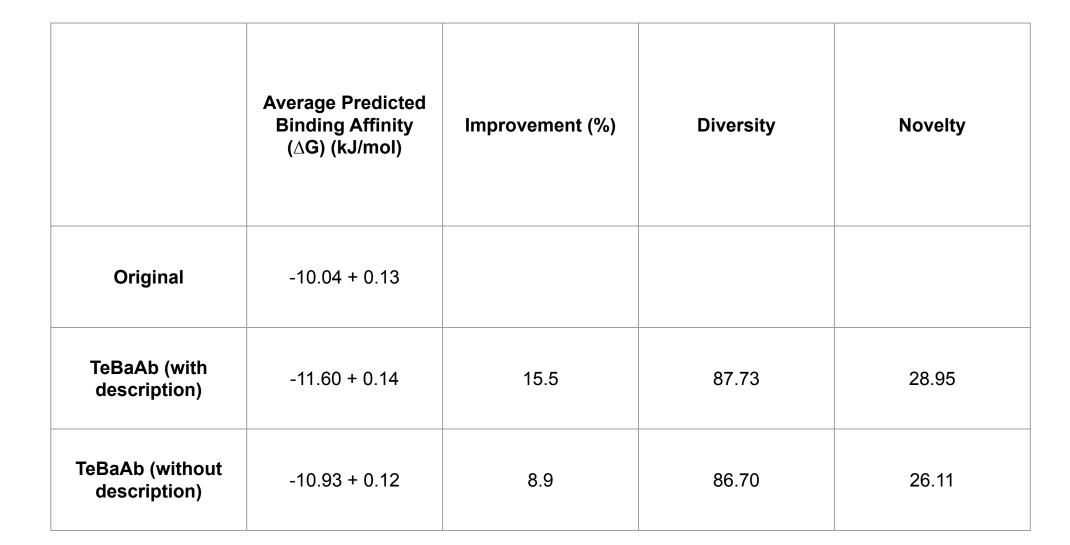
Output: Optimized antibody set S_G

- 1 Initialize generation counter $g \leftarrow 0$ Initialize population $S_0 = \{s_1, s_2, \dots, s_K\}$
- 2 while g < G do
 - Initialize empty candidate pool $C_g \leftarrow \emptyset$

for each antibody $s \in S_g$ do

Generate B variants $\{s'_1, ..., s'_B\}$ via CVAE conditioned on (s, A, D) foreach $variant \ s'_i$ do

Predict binding affinity $\hat{y}(s'_i, A)$ using affinity predictor Add (s'_i, \hat{y}) to C_g


end end

end
Combine S_g and C_g into one candidate pool Select top Ksequences with lowest predicted \hat{y} to form S_{g+1} $g \leftarrow g+1$

10 end

11 return final optimized set S_G

Results

	Average Structural Confidence								
	Framework H-chain	CDR-H1	CDR-H2	CDR-H3	Framework L-chain	CDR-L1	CDR-L2	CDR-L3	
Original	0.315	0.303	0.190	0.188	0.238	0.252	0.182	0.235	
TeBaAb (with description)	0.362	0.290	0.191	0.196	0.260	0.307	0.192	0.238	

Conclusion

- **TeBaAb** enables text-guided, antigen-specific, and structurally robust antibody design.
- Opens new directions for controllable protein engineering.
- Future work will extend textual conditioning to a wider range of properties, incorporate structural constraints,

