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Proteins & drugs interact like locks and keys → knowing the exact interaction is critical for drug
design.
Current approach needs 3D structures (rare) or only checks closeness (limited insight).
Our approach: sequence-based model that predicts meaningful drug-protein interactions directly
from sequence data.

Contribution

First sequence-based framework for predicting biologically meaningful types
(H-bonds, π-stacking, salt bridges).
Sequence-level inference: no 3D structure, scalable & interpretable.
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Does the aromatic group at that position interact with residue 7 of the protein?
What type of interaction is it?

———————-
Input:

Protein sequence: T (with R residues).
Drug sequence: D (with F functional groups).

Output: probabilities over 7 interaction types, including H-bond, hydrophobic,
π-stacking, π-cation, salt bridge, water bridge, halogen bond.

fLINKER : (T,D) → P ∈ [0,1]R×F×7
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(1) Protein Language Model (ESM C) encodes protein sequences; (2) FGParser extracts
functional groups from SMILES; (3) FINGER-ID builds context-aware functional group
embeddings; (4) SCAT: self & cross attention for residue–group integration; (5) Pairwise-
UNet predicts interaction probability maps.

Residue Interaction Prediction

LINKER predicts a probability tensor P ∈ [0,1]R×F×7

(R: residues, F : functional groups, 7: interaction types).
Step 1: Aggregate over functional groups (from P)

Ur ,k = max
1≤f≤F

Pr ,f ,k , 1 ≤ r ≤ R, 1 ≤ k ≤ 7

We have residue-interaction matrix U ∈ [0,1]R×7.
Step 2: Aggregate over interaction types (from U)

yr = max
1≤k≤7

Ur ,k , 1 ≤ r ≤ R

Final residue-level vector y ∈ [0,1]R (residue prediction probabilities).
Enables fair comparison with ArkDTA (residue-level supervision).
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(a) Precision–Recall
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(b) ROC Curve

Residue-level interaction prediction. LINKER consistently surpasses ArkDTA in both PR
(left) and ROC (right). The PR analysis emphasizes robustness under class imbalance,
while the ROC highlights stronger overall discrimination.

Residue-Functional Group Interaction Prediction

Quantitative Evaluation:
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Enrichment: 174×
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(a) PR curve with enrichment over the prevalence
baseline (dashed).
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(b) ROC curve showing strong discrimination
between interacting and non-interacting pairs.

Residue-Functional Group interaction prediction. LINKER delivers markedly higher en-
richment at low recall and strong overall discrimination compared to a random baseline.
Quanlitative Evaluation:
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Comparison between LINKER predictions and PLIP ground truth for hydrophobic contacts
across four protein structures. X-axis: functional group indices from FGParser; Y-axis:
residue indices.

Transferability of LINKER Representations to Binding
Affinity Prediction

Model Train Validation Test
AutoDock Vina 2.42 2.29 2.56
InteractionGraphNet (IGN) 1.65 2.00 2.16
Random Forest (RF)-Score 0.68 2.14 2.10
DeepDTA 1.41 2.07 2.29
MPRL 0.48 1.47 1.55
ArkDTA 1.18 1.47 1.48
LINKER (Binding Affinity Predictor) 1.38 1.53 1.47

Comparison of RMSE on the Leak-Proof PDBBind benchmark for binding affinity predic-
tion.
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