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baseline (dashed). between interacting and non-interacting pairs.
Proteins & drugs interact like locks and keys — knowing the exact interaction is critical for drug . _ _ _ o . _
Current approach needs 3D structures (rare) or only checks closeness (limited insight). functional groups from SMILES; (3) FINGER-ID builds context-aware functional group richment at low recall and strong overall discrimination compared to a random baseline.
Our approach: sequence-based model that predicts meaningful drug-protein interactions directly embeddings; (4) SCAT: self & cross attention for residue—group integration; (5) Pairwise- Quanlitative Evaluation:
from sequence data. UNet predicts interaction probability maps.
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First sequence-based framework for predicting biologically meaningful types
(H-bonds, 7-stacking, salt bridges).
Sequence-level inference: no 3D structure, scalable & interpretable.

LINKER predicts a probability tensor P < [0, 1]7*F<7
(R: residues, F: functional groups, 7: interaction types).

Step 1: Aggregate over functional groups (from P)
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C1=CC=C(C=C1)C=0 + aldehyde el Final residue-level vector y € [0,1]" (residue prediction probabilities). Comparison between LINKER predictions and PLIP ground truth for hydrophobic contacts
\ Enables fair comparison with ArkDTA (residue-level supervision). across four protein structures. X-axis: functional group indices from FGParser; Y-axis:
— , . | residue indices.
—»reS|due 1 o o
) ? —— LINKER (AP = 0.4073)
g y 05! —— ArkDTA (AP = 0.2938) 03]
> | S ' --=- Random (Prevalence = 0.0243 % . ags . . .
VDEQSRACTRAN gy - _ -7 i ( ) & Transferability of LINKER Representations to Binding
Protein sequence (A)—>residue 7" «— — 2 0.6 20.61 o 7
c L % Affinity Prediction
R o (.41 o 0.41 =
= ) 2 —— LINKER (AUC = 0.9369)
H J—>residue 127 0.2 " 0.2 " —— ArkDTA (AUC = 0.8688)
D th i t that tion int t with residue 7 of th tein? ool b7 Random (AUC = 0.5) Model Train Validation Test
oes the aromatic group at that position interact with residue 7 of the protein . 01 :
What tvee of inter gt. np. ” P P MO TR SR RS —=— AutoDock Vina 242 229 256
at type of interaction Is 1t False Positive Rate InteractionGraphNet (IGN) 165 2.00 2.16
Random Forest (RF)-Score 0.68 2.14 2.10
|nput: (a) Precision—Recall (b) ROC Curve DeepDTA 1.41 2 07 2 29
= Protein sequence: T (with R residues). _ _ _ o _ _ MPRL 0-48 1'47 1'55
. Drug sequence: D (with F functional groups). Residue-level interaction prediction. LINKER consistently surpasses ArkDTA in both PR ArKDTA 1.18 1-47 1-4
Output: probabilities over 7 interaction types, including H-bond, hydrophobic, (left) and ROC (right). The PR analysis emphasizes robustness under class imbalance, r : - 48
while the ROC highlights stronger overall discrimination. LINKER (Binding Affinity Predictor) 1.38 1.53 1.47

w-stacking, w-cation, salt bridge, water bridge, halogen bond.
Comparison of RMSE on the Leak-Proof PDBBind benchmark for binding affinity predic-

finker : (T,D) — P[0, 1]7<Fx7 tion.
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