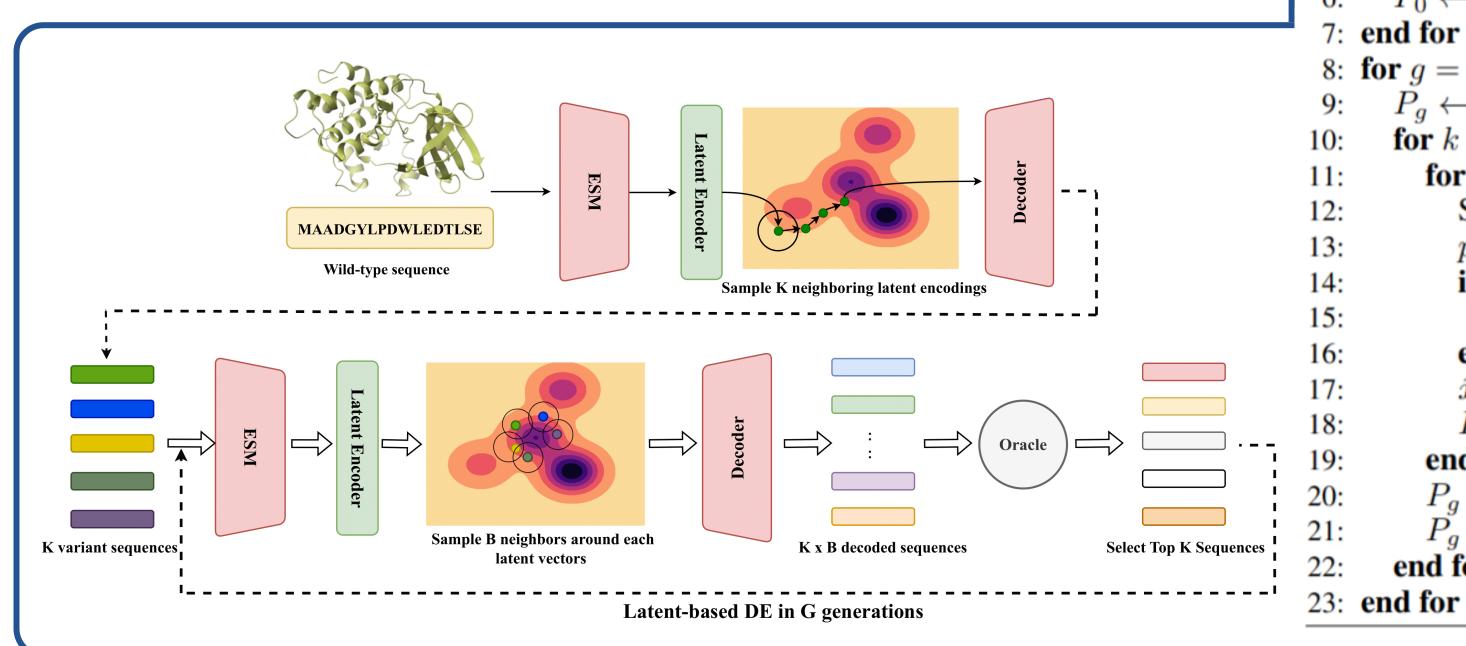


Latent-based Directed Evolution accelerated by Gradient Ascent for Protein Sequence Design

Thanh V. T. Tran*,1 Nhat Khang Ngo^{*,1} Viet Thanh Duy Nguyen¹ Truong Son Hy²

> ¹FPT Software AI Center, Vietnam ²University of Alabama at Birmingham, United States

Motivation Sequence Space **Latent Space**



Method

Algorithm 1 Latent-based directed evolution accelerated by gradient ascent

Input: x^{wt} , encoder ϕ , decoder θ , fitness predictor f, # iterations T, # generations G, beam size B, oracle

1: $\mathcal{P}_0 \leftarrow \emptyset$ 2: **for** i = 1 **to** K **do** 3: Sample $z \sim \mathcal{N}(\mu_{\phi}(x^{wt}), \sigma_{\phi}(x^{wt})^2)$ 4: $z_T \leftarrow \text{gradient_ascent}(z, f, T) \text{ in Equation (4)}$ 5: $\hat{x} \leftarrow \theta(z_T)$ $P_0 \leftarrow P_0 \cup \{(\hat{x}, \mathcal{O}(\hat{x}))\}$ 7: **end for** 8: **for** g = 1 **to** G **do** $P_g \leftarrow \emptyset$ for k = 1 to K do for b = 1 to B do

Sample $z_{k,b} \sim \mathcal{N}(\mu_{\phi}(x_k), \sigma_{\phi}(x_k)^2)$ $p \sim \mathcal{U}[0,1)$ if p > threshold then Inject noise to $z_{k,b}$ based on Equation (5) end if

 $\hat{x}_{k,b} \leftarrow \theta(z_{k,b})$ $P_g \leftarrow P_g \cup \{(\hat{x}_{k,b}, \mathcal{O}(\hat{x}_{k,b}))\}$ end for

 $P_g \leftarrow P_g \cup P_{g-1} \\ P_g \leftarrow \mathsf{topK}(P_g)$ end for

Results

Maximum fitness score and Impact of GA and DE

	avGFP	AAV	TEM	E4B	AMIE	LGK	Pab1	UBE2I
x^{wt}	1.408	-6.778	-0.015	0.774	-2.789	-1.260	0.014	-0.262
AdaLead	3.323	-1.545	0.248	-0.373	-1.483	-0.047	0.382	2.765
DyNA PPO	5.331	-2.817	0.570	-0.575	-2.790	-0.060	0.183	2.630
CbAS	5.187	-2.800	0.481	-0.658	-1.784	-0.056	0.276	2.693
CMA-ES	5.125	-3.267	0.590	-0.658	-2.790	-0.086	0.254	2.527
COMs	3.544	-3.533	0.472	-0.860	-20.182	-0.087	0.156	2.086
PEX	3.796	2.378	0.252	4.317	-0.364	0.009	1.326	3.578
GFN-AL	5.028	-4.444	0.654	-0.831	-37.360	-5.738	1.399	3.850
GGS	3.368	2.442	1.121	-1.147	-3.364	-0.972	0.059	4.101
LDE (ours)	8.058	2.636	1.745	5.120	-0.103	0.018	1.548	4.297
- w/o GA	6.407	2.148	1.220	4.597	-0.099	-0.531	1.592	3.254
- w/o DE	3.677	0.919	-0.024	3.052	-0.701	-1.597	0.285	0.766

Integration of active learning

Algorithm 2 Active Learning with Latent-Based DE

Input: a VAE $M = (\phi, \theta, f)$, training dataset \mathcal{D}_t , number of rounds N, optimization oracle \mathcal{O} , number of epochs n.

- 1: Train M on \mathcal{D}_t
- 2: $\mathcal{D}_0 \leftarrow \emptyset$
- 3: **for** i = 1 **to** N **do**
- Run Algorithm 1 with oracle \mathcal{O} and M to
- find population $\mathcal{P} = \{(x, \mathcal{O}(y)) | x \in \mathcal{V}^L, y \in \mathbb{R}\}.$
- $\mathcal{D}_i \leftarrow \mathcal{D}_{i-1} \cup \text{RemoveDuplicate}(\mathcal{P})$ Update M on the data \mathcal{D}_i in n epochs
- 7: end for

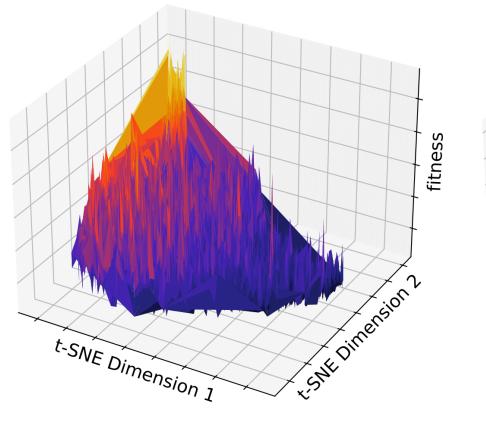
Return P_G

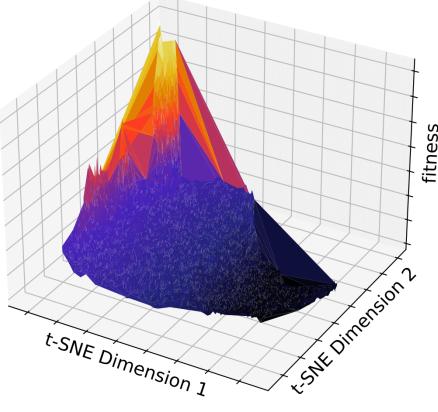
Model	TEM	AMIE	LGK	UBE2I
LDE – w/ active	1.000	-0.558 -0.015	0.000	2.976 3.698

Active learning helps with small datasets!!

Latent space visualization

VAE regularization helps organizing latent representations by fitness scores!!





(a) Ground-truth

(b) Regularized

Scores with non-autoregressive and autoregressive decoder

	avGFP	AAV	TEM	E4B	AMIE	LGK	Pab1	UBE2I	Average
Non-autoregressive LDE	3.733	1.368	1.095	3.123	-0.558	-0.005	0.089	2.976	1.430
(Autoregressive) LDE	8.058	2.636	1.745	5.120	-0.103	0.018	1.548	4.297	3.204

Correspondence to thy@uab.edu



