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Motivation & Main Results

• Spatiotemporal forecast is crucial but challenging (medical, traffic, weather, etc.)

• Bottlenecks:

– High-dimensional due to large network and long time series

– Strong and dynamic hidden spatio-temporal dependencies

– Possibly noisy and corrupted signals

• Graph neural networks (GNNs) have seen success in modeling spatiotemporal signals

• For dense graphs, adjacency matrix may waste resource and fail to capture locality

• We propose:

– Memory & time efficient end-to-end model for spatiotemporal forecast.

– Multiresolution analysis & wavelet theory to represent graph structure.

– Traffic & brain signals prediction with competitive performance

Prior Arts

Traditional methods

• Historical Average

• ARIMA with Kalman filter

• Vector Auto-regressive VAR

• Linear Support Vector Regression SVR

Deep learning

• Feed-forward neural network FNN

• Fully-connected LSTM

• Spatio-Temporal Graph Convolutional Networks (STGCN)

• GWaveNet

• Diffusion Convolutional RNN (DCRNN)

Wavelet Neural Networks

Based on Graph Fourier Transform (GFT) (Bruna et al., 2014), each convolution layer
k = 1, ..,K transforms an input vector f (k−1) into an output f (k) as
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where W = [ϕ,ψ] is our wavelet basis matrix of a total of N wavelets:

• L mother wavelets ψ = {ψ1, .., ψL},

• N −L father wavelets ϕ = {ϕLm =Hm,∶}m∈SL;

and

• g
(k)
i,j is a parameter/filter,

• σ is a non-linear activation function,

• Sparse wavelet bases Ð→ Efficient sparse wavelet transform

Multiresolution Matrix Factorization

MMF of a symmetric adjacency matrix L ∈ Rn×n (Kondor et al., 2014) is:
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where:

• Each Uℓ is an orthogonal matrix that is a k-point rotation (small k),

• There is a nested sequence of sets SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] such that the coordinates
rotated by Uℓ are a subset of Sℓ,

• H is an SL-core-diagonal matrix meaning that is diagonal with a an additional small
SL × SL dimensional “core”.

Not based on the low-rank assumption

Fast Temporal Wavelet Graph Neural Networks

1. Spatial Dependency Model: Captures spatial dynamics using a diffusion process on
an undirected graph G = (X,A). The diffusion equation is given by

dX(t)

dt
= (Ã − I)X(t)

2. Temporal Dependency Model: Utilizes the Diffusion Convolutional Gated Recur-
rent Unit (DCGRU) to model temporal dependencies. Key equations include reset gate
r(t), update gate u(t), cell state C(t), and hidden state H(t).
3. FTWGNN: Differs from DCRNN by using a sparse wavelet basis matrix W extracted
via MMF and employing fast wavelet convolution in place of diffusion convolution. This
reduces computational time and memory usage.

Software

Our PyTorch implementation is publicly available at:

https://github.com/HySonLab/TWGNN

We utilize MMF implementation at:

https://github.com/risilab/Learnable_MMF

Experiments

Dataset T Metric HA ARIMAkal VAR SVR FNN FC-LSTM STGCN GWaveNet DCRNN FTWGNN

METR-LA

MAE 4.16 3.99 4.42 3.99 3.99 3.44 2.88 2.69 2.77 2.70
15 min RMSE 7.80 8.21 7.89 8.45 7.94 6.30 5.74 5.15 5.38 5.15

MAPE 13.0% 9.6% 10.2% 9.3% 9.9% 9.6% 7.6% 6.9% 7.3% 6.8%
MAE 4.16 5.15 5.41 5.05 4.23 3.77 3.47 3.07 3.15 3.02

30 min RMSE 7.80 10.45 9.13 10.87 8.17 7.23 7.24 6.22 6.45 5.95
MAPE 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 9.6% 8.4% 8.8% 8.0%
MAE 4.16 6.90 6.52 6.72 4.49 4.37 4.59 3.53 3.60 3.42

60 min RMSE 7.80 13.23 10.11 13.76 8.69 8.69 9.40 7.37 7.59 6.92
MAPE 13.0% 17.4% 15.8% 16.7% 14.0% 13.2% 12.7% 10.0% 10.5% 9.8%

PEMS-BAY

MAE 2.88 1.62 1.74 1.85 2.20 2.05 1.36 1.3 1.38 1.14
15 min RMSE 5.59 3.30 3.16 3.59 4.42 4.19 2.96 2.74 2.95 2.40

MAPE 6.8% 3.5% 3.6% 3.8% 5.2% 4.8% 2.9% 2.7% 2.9% 2.3%
MAE 2.88 2.33 2.32 2.48 2.30 2.20 1.81 1.63 1.74 1.50

30 min RMSE 5.59 4.76 4.25 5.18 4.63 4.55 4.27 3.70 3.97 3.27
MAPE 6.8% 5.4% 5.0% 5.5% 5.43% 5.2% 4.2% 3.7% 3.9% 3.2%
MAE 2.88 3.38 2.93 3.28 2.46 2.37 2.49 1.95 2.07 1.79

60 min RMSE 5.59 6.5 5.44 7.08 4.98 4.96 5.69 4.52 4.74 3.99
MAPE 6.8% 8.3% 6.5% 8.0% 5.89% 5.7% 5.8% 4.6% 4.9% 4.1%

Dataset T Metric HA VAR LR SVR LSTM DCRNN FTWGNN

AJILE12

MAE 0.88 0.16 0.27 0.27 0.07 0.05 0.03
1 sec RMSE 1.23 0.25 0.37 0.41 0.09 0.45 0.35

MAPE 320% 58% 136% 140% 38% 7.84% 5.27%
MAE 0.88 0.66 0.69 0.69 0.39 0.16 0.11

5 sec RMSE 1.23 0.96 0.92 0.93 0.52 0.24 0.15
MAPE 320% 221% 376% 339% 147% 64% 57%
MAE 0.88 0.82 0.86 0.86 0.87 0.78 0.70

15 sec RMSE 1.23 1.15 1.13 1.13 1.14 1.01 0.93
MAPE 320% 320% 448% 479% 330% 294% 254%

FTWGNN outperforms others by roughly 10%.

Dataset T DCRNN FTWGNN Speedup

METR-LA
15 min 350s 217s 1.61x
30 min 620s 163s 3.80x
60 min 1800s 136s 13.23x

PEMS-BAY
15 min 427s 150s 2.84x
30 min 900s 173s 5.20x
60 min 1800s 304s 5.92x

AJILE12
1 sec 80s 35s 2.28x
5 sec 180s 80s 2.25x
15 sec 350s 160s 2.18x

FTWGNN’s training time is faster than DCRNN’s by 5 times on average.

Dataset Fourier basis Wavelet basis

METR-LA 99.04% 1.11%
PEMS-BAY 96.35% 0.63%
AJILE12 100% 1.81%

FTWGNN provides a remarkable compression of wavelet bases compared to Fourier bases.
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