

Motivation & Main Results

- Spatiotemporal forecast is crucial but challenging (medical, traffic, weather, etc.)
- Bottlenecks:
 - High-dimensional due to large network and long time series
 - Strong and dynamic hidden spatio-temporal dependencies
 - Possibly noisy and corrupted signals
- Graph neural networks (GNNs) have seen success in modeling spatiotemporal signals
- For dense graphs, adjacency matrix may waste resource and fail to capture locality
- We propose:
 - Memory & time efficient end-to-end model for spatiotemporal forecast.
 - Multiresolution analysis & wavelet theory to represent graph structure.
 - Traffic & brain signals prediction with competitive performance

Prior Arts

Traditional methods

- Historical Average
- ARIMA with Kalman filter
- Vector Auto-regressive VAR
- Linear Support Vector Regression SVR

Deep learning

- Feed-forward neural network FNN
- Fully-connected LSTM
- Spatio-Temporal Graph Convolutional Networks (STGCN)
- GWaveNet
- Diffusion Convolutional RNN (DCRNN)

Wavelet Neural Networks

Based on Graph Fourier Transform (GFT) (Bruna et al., 2014), each convolution layer k = 1, ..., K transforms an input vector $f^{(k-1)}$ into an output $f^{(k)}$ as

$$\boldsymbol{f}_{:,j}^{(k)} = \sigma \left(\boldsymbol{W} \sum_{i=1}^{F_{k-1}} \boldsymbol{g}_{i,j}^{(k)} \boldsymbol{W}^T \boldsymbol{f}_{:,i}^{(k-1)} \right) \quad \text{for } j = 1, \dots, F_k,$$

where $\boldsymbol{W} = [\overline{\phi}, \overline{\psi}]$ is our wavelet basis matrix of a total of N wavelets:

- L mother wavelets $\overline{\psi} = \{\psi^1, .., \psi^L\},\$
- N L father wavelets $\overline{\phi} = \{\phi_m^L = H_{m,:}\}_{m \in \mathbb{S}_I};$

and

- $g_{i,j}^{(k)}$ is a parameter/filter,
- σ is a non-linear activation function
- Sparse wavelet bases \longrightarrow Efficient sparse wavelet transform

FAST TEMPORAL WAVELET GRAPH NEURAL NETWORKS

Duc Thien Nguyen^{*1}, Manh Duc Tuan Nguyen ^{*2} Truong Son Hy^{*†3}, and Risi Kondor⁴ Tokyo Institute of Technology¹, Toyo University², Indiana State University³, University of Chicago⁴ *: Equal contribution. †: Correspondence to **TruongSon.Hy@indstate.edu**

Multiresolution Matrix Factorization MMF of a symmetric adjacency matrix $\boldsymbol{L} \in \mathbb{R}^{n \times n}$ (Kondor et al., 2014) is: $\boldsymbol{L} = \boldsymbol{U}_1^T \boldsymbol{U}_2^T \dots \boldsymbol{U}_L^T \boldsymbol{H} \boldsymbol{U}_L \dots \boldsymbol{U}_2 \boldsymbol{U}_1,$ where: • Each U_{ℓ} is an orthogonal matrix that is a k-point rotation (small k), • There is a nested sequence of sets $\mathbb{S}_L \subseteq \cdots \subseteq \mathbb{S}_1 \subseteq \mathbb{S}_0 = [n]$ such that the coordinates rotated by U_{ℓ} are a subset of \mathbb{S}_{ℓ} , • H is an S_L -core-diagonal matrix meaning that is diagonal with a an additional small $\mathbb{S}_L \times \mathbb{S}_L$ dimensional "core". $\Pi^{\top}\approx$ Π H U_L U_1 U_L^T Not based on the low-rank assumption **Fast Temporal Wavelet Graph Neural Networks** . Spatial Dependency Model: Captures spatial dynamics using a diffusion process on an undirected graph G = (X, A). The diffusion equation is given by $\frac{\mathrm{d}\boldsymbol{X}(t)}{\mathrm{d}t} = (\tilde{\boldsymbol{A}} - \boldsymbol{I})\boldsymbol{X}(t)$ 2. Temporal Dependency Model: Utilizes the Diffusion Convolutional Gated Recurrent Unit (DCGRU) to model temporal dependencies. Key equations include reset gate $r^{(t)}$, update gate $u^{(t)}$, cell state $C^{(t)}$, and hidden state $H^{(t)}$. 3. **FTWGNN:** Differs from DCRNN by using a sparse wavelet basis matrix \boldsymbol{W} extracted via MMF and employing fast *wavelet convolution* in place of diffusion convolution. This reduces computational time and memory usage.

Software

Our PyTorch implementation is publicly available at:

https://github.com/HySonLab/TWGNN

We utilize MMF implementation at:

https://github.com/risilab/Learnable_MMF

Experiments

Dataset	T	Metri	ic HA	ARIMA _{kal}	VAR	SVR	FNN	FC-LS	TM STGC	N GWaveNe	t DCRNN	FTWGN
		MAE	E 4.16	3.99	4.42	3.99	3.99	3.44	2.88	2.69	2.77	2.70
METR-LA	15 mir	in RMS	E 7.80	8.21	7.89	8.45	7.94	6.30	5.74	5.15	5.38	5.15
		MAP	E 13.0%	9.6%	10.2%	9.3%	9.9%	9.6%	ó 7.6%	6.9%	7.3%	6.8%
	30 mir	MAE	E 4.16	5.15	5.41	5.05	4.23	3.77	3.47	3.07	3.15	3.02
		in RMS	E 7.80	10.45	9.13	10.87	8.17	7.23	7.24	6.22	6.45	5.95
		MAP	E 13.0%	12.7%	12.7%	12.1%	12.9%	<u>6</u> 10.9%	% 9.6%	8.4%	8.8%	8.0%
		MAE	$E \mid 4.16$	6.90	6.52	6.72	4.49	4.37	4.59	3.53	3.60	3.42
	60 m	in [RMS]	E 7.80	13.23	10.11	13.76	8.69	8.69	9.40	7.37	7.59	6.92
		MAP	E 13.0%	17.4%	15.8%	16.7%	14.0%	<u>0 13.27</u>	76 12.79	⁷ 0 10.0%	10.5%	9.8%
PEMS-BAY		MAE	E 2.88	1.62	1.74	1.85	2.20	2.05	1.36	1.3	1.38	1.14
	15 mi	in RMS	E 5.59	3.30	3.16	3.59	4.42	4.19	2.96	2.74	2.95	2.40
		MAP	E 6.8%	3.5%	3.6%	3.8%	5.2%	4.8%	b 2.9%	2.7%	2.9%	2.3%
		MAE	E 2.88	2.33	2.32	2.48	2.30	2.20	1.81	1.63	1.74	1.50
	30 m	$\ln RMS $	E 5.59	4.76	4.25	5.18	4.63	4.55	4.27	3.70	3.97	3.27
		MAP	E 6.8%	5.4%	5.0%	5.5%	5.43%	5.2%	4.2%	3.7%	3.9%	3.2%
		MAE	E 2.88	3.38	2.93	3.28	2.46	2.37	2.49	1.95	2.07	1.79
	60 m	$\ln RMS $	E 5.59	6.5	5.44	7.08	4.98	4.96	5.69	4.52	4.74	3.99
		MAP	E 6.8%	8.3%	6.5%	8.0%	5.89%	<u>5.7%</u>	5.8%	4.6%	4.9%	4.1%
Datas	et	T	Metri	ic HA	VA]	R I	JR	SVR	LSTM	DCRNN	FTW	GNN
			MAE	E 0.88	0.10	<u> 6</u> 6	.27	0.27	0.07	0.05	0.0	3
		1 sec	BMS	E 1 23	0.2!	5 0	37	0 41	0.09	0.45	0.3	5
			MAP	E 320%	58%	6 13	6%	140%	38%	7.84%	5.27	7%
			MAE	E 0.88	0.6	<u>6</u> 6	.69	0.69	0.39	0.16	0.1	1
	110	5 sec	RMS	E 1.23	0.9	6 ĉ	.92	0.93	0.52	0.24	0.1	5
AJILE			MAP	E 320%	221	% 37	6%	339%	147%	64%	57	76
			MAE	E 0.88	0.82	2 0	.86	0.86	0.87	0.78	0.7	'0
	-	$15 \mathrm{sec}$	RMS	E 1.23	1.1	5 1	.13	1.13	1.14	1.01	0.9	3
	11						- ~	1 - 2	aaaM			\sim

FTWGNN outperforms others by roughly 10%.

Dataset	T	DCRNN	FTWGNN	Spee
	$15 \min$	350s	217s	1.6
METR-LA	30 min	620s	163 s	3.8
	$60 \min$	1800s	136 s	13.
PEMS-BAY	$15 \min$	427s	150s	2.8
	30 min	900s	173s	5.2
	$60 \min$	1800s	304s	5.9
	1 sec	80s	35s	2.2
AJILE12	5 sec	180s	80 s	2.2
	15 sec	350s	160 s	2.1

FTWGNN's training time is faster than DCRNN's by 5 times on average.

Dataset	Fourier basis	Wavelet basis
METR-LA	99.04%	1.11%
PEMS-BAY	96.35%	0.63%
AJILE12	100%	1.81%

FTWGNN provides a remarkable compression of wavelet bases compared to Fourier bases.

Reference

[1] Kondor et al., Multiresolution Matrix Factorization, ICML 2014 [2] Truong Son Hy and Risi Kondor, Multiresolution Matrix Factorization and Wavelet Networks on Graphs, PMLR 196:172-182

edup $\begin{array}{r}
1 \\
.61x \\
.80x \\
.84x \\
.20x \\
.92x \\
.92x \\
.28x \\
.25x \\
.8x \\$