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Abstract

Latent representations of drugs and their targets produced by contemporary graph
autoencoder-based models have proved useful in predicting many types of node-pair in-
teractions on large networks, including drug-drug, drug-target, and target-target interac-
tions. However, most existing approaches model the node’s latent spaces in which node
distributions are rigid and disjoint; these limitations hinder the methods from generat-
ing new links among pairs of nodes. In this paper, we present the effectiveness of vari-
ational graph autoencoders (VGAE) in modeling latent node representations on multi-
modal networks. Our approach can produce flexible latent spaces for each node type of
the multimodal graph; the embeddings are used later for predicting links among node
pairs under different edge types. To further enhance the models’ performance, we sug-
gest a new method that concatenates Morgan fingerprints, which capture the molecular
structures of each drug, with their latent embeddings before preceding them to the de-
coding stage for link prediction. Our proposed model shows competitive results on two
multimodal networks: (1) a multi-graph consisting of drug and protein nodes, and (2) a
multi-graph consisting of drug and cell line nodes. Our source code is publicly available at
https://github.com/HySonLab/drug-interactions.

Problem Overview

Figure 1: Caption

A biomedical multi-modal graph consists of two node types (e.g., red nodes are protein and
the green are drug nodes) and five edge types {ei}. The edges can be either polypharmacy
side effects, drug responses, or drug-protein interactions, etc.
Formally, let denote G = (V,E,X), where V = Vd ∪ Vp is a union of two node sets of
different types (i.e. Vd is the set of drug nodes and Vp is the set of protein nodes), E is
a set of edges, and X = Xd ⊕Xp is a concatenated matrix denoting the node features of
different node types.
Each edge in E is a triplet (vi, e, vj) in which node vi interacts with node vj under a
specific edge type e. The objective is to learn a function f ∶ E → T , where f predicts the
value of a particular triplet (vi, e, vj); T can be either {0, 1} or R.

Graph Variational Autoencoder on Multi-Modal Graphs

We extend graph variational autoencoders proposed in ( Kipf and Welling 2016). The
VGAE-based model proposed in this paper operates on multi-modal graphs in which dif-
ferent node types have different posterior distributions.
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e denotes the neighbor set of node xi under the edge type e. We ∈ Rdk×d is a

edge-type specific transformation matrices that map xi ∈ Rdi and its neighbors xj ∈ Rdj

into dk-dimensional vector spaces, resulting in hi ∈ Rdk.

Graph Variational Autoencoder on Multi-Modal Graphs
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Latent Encoder
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qv(ziv ∣ X,E) = N (ziv ∣ µiv,diag((σiv)2) denotes the posterior distribution of a node of a
specific node type. Here, µv and logσv are computed as follows:
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where W i
µv ∈ Rdk×d, W i

σv ∈ Rdk×d are the weight matrices, µv and logσv are the matrices

of mean vector µiv and logarithm of standard deviation vector logσiv, respectively.

Decoder

g(vi, e, vj) =
⎧⎪⎪⎨⎪⎪⎩

zTi DeRDezj if vi and vj are drugs

zTi Mezj if vi and vj are a protein and a drug, or vice versa.

where De,R,Me ∈ Rd×d are learnable parameters. R denotes the global matrix rep-
resenting all drug-drug interactions among all polypharmacy side effects; Me is a edge-
type-specific matrix modeling drug-protein and protein-protein relations. Also, De is a
diagonal matrix, and its on-diagonal entries model the significance factors of zi and zj in
multiple dimensions under the side effect type e.
Finally, the probability of edge (vi, e, vj) is calculated via a sigmoid function σ.

pe(vi, vj) = σ(g(vi, e, vj))

Augment latent variables by Morgan fingerprints

We concat the molecular structure information of drugs, which are resepresented as Mor-
gan fingerprints, with the latent variables computed by the previous graph varia

Polypharmacy Side Effects Prediction

Drug combinations consisting of many drugs affecting distinct targeted proteins can
effectively modulate the process of severe diseases (Sun et al. 2015). Albeit commonly
applied, polypharmacy is one of the major underlying issues that cause adverse medical
outcomes, also known as side effects caused by drug combinations ( Zitnik et al. 2018) .

Method AUROC AUPRC AP@50

RESCAL tensor factorization 0.693 0.613 0.476
DEDICOM tensor factorization 0.705 0.637 0.567
DeepWalk neural embeddings 0.761 0.737 0.658
Concatenated drug features 0.793 0.764 0.712

Decagon 0.872 0.832 0.803
GAE 0.893 ± 0.002 0.862 ± 0.003 0.819 ± 0.006

VGAE (ours) 0.905 ± 0.001 0.880 ± 0.001 0.853 ± 0.005
VGAE + Morgan fingerprints (ours) 0.944 ± 0.005 0.926 ± 0.005 0.920 ± 0.004

The proposed methods are evaluated in 6 different random seeds for random link split on
the network and weight initialization. We compare the performance of VGAE to
alternative approaches. In addition to VGAE, we also implement a graph autoencoder.
The baseline results are taken from (Zitnik et al. 2018). Our approach outperforms the
competitors across three metrics.

Anticancer Drug Response Prediction

Integrated information between drugs and cell lines are an effective approach to calculate
anticancer drug responses using computational methods.

Method RMSE ↓ R2 ↑ PCC ↑ fitness ↑
ADRML 0.49 0.68 0.85 1.04
CDRscan 0.76 0.67 0.83 0.74
CDCN 0.48 0.67 0.83 1.02
SRMF 0.25 0.40 0.80 0.95

CaDRRes 0.53 0.31 0.52 0.3
KNN 0.56 0.57 0.78 0.79

VGAE (ours) 0.46 ± 0.02 0.67 ± 0.03 0.85 ± 0.01 1.05 ± 0.06

This table demonstrates the comparisons between VGAE and other baselines which are
taken from ( Ahmadi Moughari and Eslahch 2020). The results reveal that VGAE can
achieve comparable results with other baselines.

Software

Our PyTorch implementation is publicly available at:

https://github.com/HySonLab/drug-interactions
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