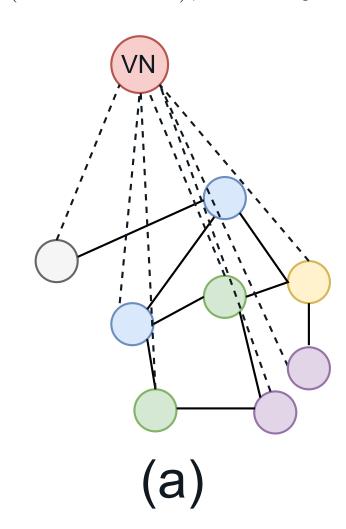
On the Connection Between MPNN and Graph Transformer

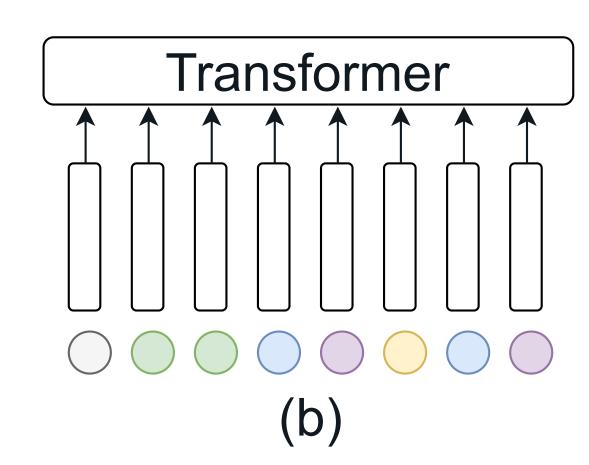
Chen Cai¹, Truong Son Hy¹, Rose Yu¹, and Yusu Wang¹

University of California San Diego ¹ Emails: {c1cai,tshy,roseyu,yusuwang}@ucsd.edu

Motivation & Main Results

- Message-passing neural networks (MPNN) have been the leading architecture for processing graph-structured data.
- Graph Transformer (GT) recently emerges as a new paradigm of graph learning algorithms.
- $\mathbf{GT} \to \mathbf{MPNN}$. With proper position embedding, GT can approximate MPNN arbitrarily well [2]
- **MPNN** \rightarrow **GT.** What about the other direction?
- We systematically study the representation power and limitation of MPNN + VN (virtual node), a widely used heuristics with little theoretical understanding.





(a) MPNN + VN = we augment the graph with a virtual node (VN) connecting to all other nodes. (b) Graph Transformer = we treat each node embedding as a token and apply a Transformer on the sequence of node embeddings/tokens.

Depth Width Self-Attention Note

O(1)	$\mathcal{O}(n^d)$	Full	Leverage the universality of equivariant DeepSets [4]
\ /	· /		
$\mathcal{O}(1)$	$\mathcal{O}(1)$	Approximate	Approximate self attention in Performer [1]
$\mathcal{O}(n)$	$\mathcal{O}(1)$	Full	Explicit construction, strong assumption on \mathcal{X}
$\mathcal{O}(n)$	$\mathcal{O}(1)$	Full	Explicit construction, relaxed assumption on \mathcal{X}

Summary of approximation result of MPNN + VN on self-attention layer. n is the number of nodes and d is the feature dimension of node features.

MPNN + VN with $\mathcal{O}(1)$ depth and $\mathcal{O}(1)$ width can approximate Performer

Rewrite self-attention in kernel form

$$\boldsymbol{x}_{i}^{(l+1)} = \sum_{j=1}^{n} \frac{\kappa \left(\boldsymbol{W}_{Q}^{(l)} \boldsymbol{x}_{i}^{(l)}, \boldsymbol{W}_{K}^{(l)} \boldsymbol{x}_{j}^{(l)}\right)}{\sum_{k=1}^{n} \kappa \left(\boldsymbol{W}_{Q}^{(l)} \boldsymbol{x}_{i}^{(l)}, \boldsymbol{W}_{K}^{(l)} \boldsymbol{x}_{k}^{(l)}\right)} \cdot \left(\boldsymbol{W}_{V}^{(l)} \boldsymbol{x}_{j}^{(l)}\right)$$
(1)

approximate kernel $\kappa(\boldsymbol{x}, \boldsymbol{y}) = \langle \Phi(\boldsymbol{x}), \Phi(\boldsymbol{y}) \rangle_{\mathcal{V}} \approx \phi(\boldsymbol{x})^T \phi(\boldsymbol{y})$

$$\boldsymbol{x}_{i}^{(l+1)} = \sum_{j=1}^{n} \frac{\phi(\boldsymbol{q}_{i})^{T} \phi(\boldsymbol{k}_{j})}{\sum_{k=1}^{n} \phi(\boldsymbol{q}_{i})^{T} \phi(\boldsymbol{k}_{k})} \cdot \boldsymbol{v}_{j} = \frac{\left(\phi(\boldsymbol{q}_{i})^{T} \sum_{j=1}^{n} \phi(\boldsymbol{k}_{j}) \otimes \boldsymbol{v}_{j}\right)^{T}}{\phi(\boldsymbol{q}_{i})^{T} \sum_{k=1}^{n} \phi(\boldsymbol{k}_{k})}.$$
 (2)

which can be approximated by MPNN+VN with constant depth and width!

- Of course Performer is just one of the efficient transformers. There are many other linear transformers that can not be expressed under MPNN+VN framework, such as Linformer and Sparse Transformer.
- Efficient transformer literature explores a larger model design space than MPNN+VN.

Wide MPNN + VN ($\mathcal{O}(1)$ depth, $\mathcal{O}(n^d)$ width)

Theorem 1. MPNN + VN can simulate (not just approximate) equivariant DeepSets: $\mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$. This implies that MPNN + VN of $\mathcal{O}(1)$ depth and $\mathcal{O}(n^d)$ width is permutation equivariant universal, and can approximate self-attention layer and transformers arbitrarily well.

Main idea: show MPNN + VN can simulate DeepSets + leverage the universality of DeepSets to approximate permutation equivariant maps.

Deep MPNN + VN ($\mathcal{O}(n)$ depth, $\mathcal{O}(1)$ width)

Definition 1. Self attention layer $L : \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$ is of the following form: $L(X) = softmax(XW_O(XW_K)^T)XW_V$.

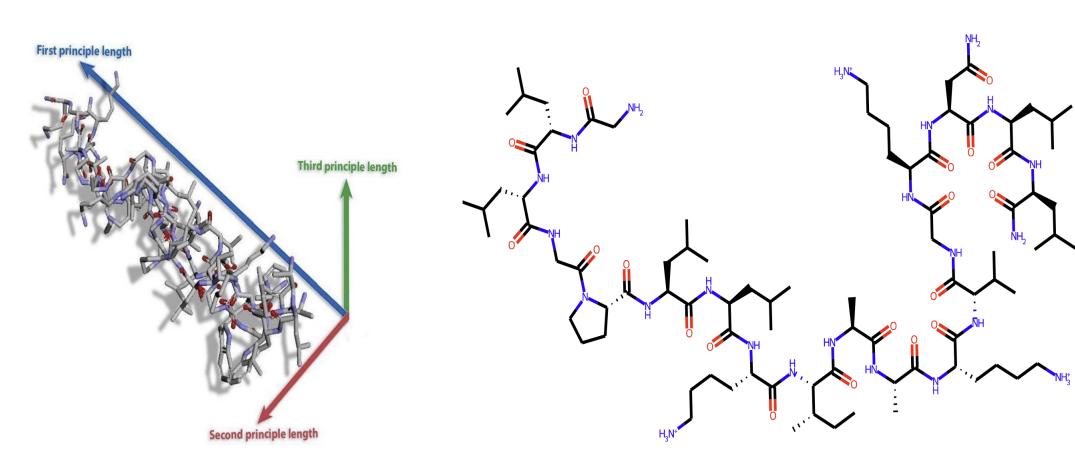
- AS1. \mathcal{X} is (\mathbf{V}, δ) separable by α for some fixed $\mathbf{V} \in \mathbb{R}^{n \times d}$ and $\delta > 0$.
- AS2. $\forall i \in [n], \boldsymbol{x}_i \in \mathcal{X}_i, \|\boldsymbol{x}_i\| < C_1$. This implies \mathcal{X} is compact.
- AS3. $\|\mathbf{W}_Q\| < C_2, \|\mathbf{W}_K\| < C_2, \|\mathbf{W}_V\| < C_2$ for target layer \mathbf{L} .

Theorem 2. Assume AS 1-3 hold for the compact set \mathcal{X} and \mathbf{L} . Given any graph G of size n with node features $\mathbf{X} \in \mathcal{X}$, and a self-attention layer \mathbf{L} on G (fix $\mathbf{W}_K, \mathbf{W}_Q, \mathbf{W}_V$), there exists a $\mathcal{O}(n)$ layer of heterogeneous MPNN + VN with the specific aggregate/update/message function that can approximate \mathbf{L} on \mathcal{X} arbitrarily well

Main idea: use VN to select one node to process at each iteration. After $\mathcal{O}(n)$ rounds, we are able to approximate one self-attention layer.

MPNN + VN for Long Range Graph Benchmark (LRGB)

- Peptides-functional and Peptides-structural are two datasets of LRGB
- Previously GT shows a large margin over MPNN
- Simply adding VN is enough to make MPNN outperform GT



Model	# Params	. Peptides-functional		Peptides-structural		
		Test AP before VN	Test AP after VN	Test MAE before	VN Test MAE after VN ↓	
GCN	508k	0.5930 ± 0.0023	0.6623 ± 0.0038	0.3496 ± 0.0013	0.2488 ± 0.0021	
GINE	476k	0.5498 ± 0.0079	0.6346 ± 0.0071	0.3547 ± 0.0045	0.2584 ± 0.0011	
GatedGCN	509k	0.5864 ± 0.0077	0.6635 ± 0.0024	0.3420 ± 0.0013	0.2523 ± 0.0016	
GatedGCN+RWSE	506k	0.6069 ± 0.0035	0.6685 ± 0.0062	0.3357 ± 0.0006	0.2529 ± 0.0009	
Transformer+LapPE	488k	0.6326 ± 0.0126	-	0.2529 ± 0.0016	-	
SAN+LapPE	493k	0.6384 ± 0.0121	-	0.2683 ± 0.0043	-	
SAN+RWSE	500k	0.6439 ± 0.0075	-	0.2545 ± 0.0012	-	

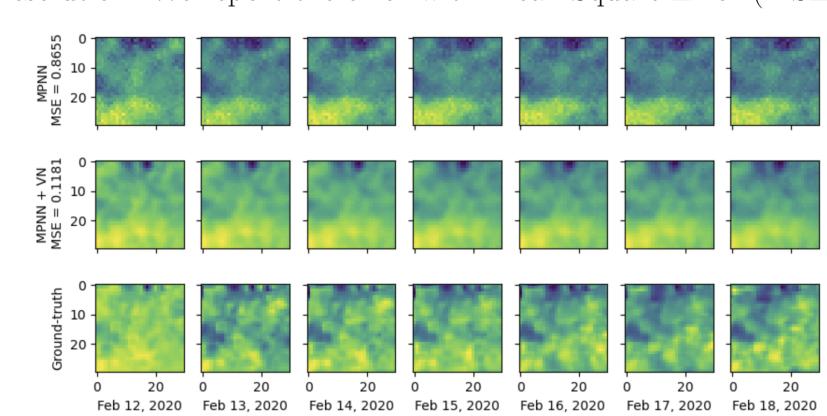
VN as a Global Module

- Replace Global Module (transformer) in GraphGPS [3] with VN module
- Comparable results with GraphGPS and much better than existing MPNN + VN

Model	${f ogbg-molhiv}$	ogbg-molpcba	ogbg-ppa	${ m ogbg\text{-}code2}$
	AUROC ↑	Avg. Precision ↑	$\mathbf{Accuracy} \uparrow$	F1 score ↑
GCN	0.7606 ± 0.0097	0.2020 ± 0.0024	0.6839 ± 0.0084	0.1507 ± 0.0018
GCN+virtual node	0.7599 ± 0.0119	0.2424 ± 0.0034	0.6857 ± 0.0061	0.1595 ± 0.0018
GIN	0.7558 ± 0.0140	0.2266 ± 0.0028	0.6892 ± 0.0100	0.1495 ± 0.0023
GIN+virtual node	0.7707 ± 0.0149	0.2703 ± 0.0023	0.7037 ± 0.0107	0.1581 ± 0.0026
SAN	0.7785 ± 0.2470	0.2765 ± 0.0042	_	_
GraphTrans (GCN-Virtual)	_	0.2761 ± 0.0029	_	0.1830 ± 0.0024
K-Subtree SAT	_	_	0.7522 ± 0.0056	0.1937 ± 0.0028
	0.7880 ± 0.0101	0.2907 ± 0.0028	0.8015 ± 0.0033	0.1894 ± 0.0024
MPNN + VN (ours)	0.7687 ± 0.0136	0.2848 ± 0.0026	0.8055 ± 0.0038	0.1727 ± 0.0017

MPNN + VN for climate prediction

We apply our MPNN + VN model to forecast daily **sea surface temperature** (SST) in the Pacific Ocean from 1982 to 2021, given 6 weeks of history to predict the next 1, 2 and 4 weeks of temperatures. The input is a grid graph of 30 longitudes and 30 latitudes at 0.5°-degree resolution. We report the error with Mean Square Error (MSE) metric.



Model4 weeks2 weeks1 weekMLP0.33020.27100.2121TF-Net0.2833**0.20360.1462**Linear Transformer + LapPE0.28180.21910.1610MPNN0.29170.22810.1613MPNN + VN**0.2806**0.21300.1540

Acknowledgements

This work was supported in part by the U.S. Department Of Energy, Office of Science, U.S. Army Research Office under Grant W911NF-20-1-0334, Google Faculty Award, Amazon Research Award, and NSF Grants #2134274, #2107256, #2134178, CCF-2217033, and CCF-2112665.

Reference

- [1] Krzysztof et al., Rethinking a en on with performers, ICLR 2021.
- [2] Kim et al., Pure transformers are powerful graph learners, NeurIPS 2022.
- [3] Rampášek et al., Recipe for a General, Powerful, Scalable Graph Transformer, NeurIPS 2022.
- [4] N. Segol and Y. Lipman, On universal equivariant set networks, ICLR 2020.