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Abstract

Multiresolution Matrix Factorization (MMF) is unusual amongst fast matrix factorization
algorithms in that it does not make a low rank assumption. This makes MMF especially
well suited to modeling certain types of graphs with complex multiscale or hierarchical
strucutre. While MMF promises to yield a useful wavelet basis, finding the factorization
itself is hard, and existing greedy methods tend to be brittle. In this paper, we propose a
“learnable” version of MMF that carfully optimizes the factorization with a combination of
reinforcement learning and Stiefel manifold optimization through backpropagating errors.
We show that the resulting wavelet basis far outperforms prior MMF algorithms and
provides the first version of this type of factorization that can be robustly deployed on
standard learning tasks. Furthermore, we construct the wavelet neural networks (WNNs)
learning graphs on the spectral domain with the wavelet basis produced by our MMF
learning algorithm. Our wavelet networks are competitive against other state-of-the-art
methods in molecular graphs classification and node classification on citation graphs.

Source code: https://github.com/risilab/Learnable_MMF

Multiresolution Matrix Factorization

MMF of a symmetric matrix A ∈ Rn×n (Kondor et al., 2014) is:

A = UT
1 U

T
2 . . .U

T
LHUL . . .U2U1,

where:
• Each Uℓ is an orthogonal matrix that is a k-point rotation (small k),

• There is a nested sequence of sets SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] such that the coordinates
rotated by Uℓ are a subset of Sℓ,

• H is an SL-core-diagonal matrix meaning that is diagonal with a an additional small
SL × SL dimensional “core”.

Not based on the low-rank assumption

Stiefel Manifold Optimization

Finding the best MMF to a symmetric matrix A involves solving

min
SL⊆⋯⊆S1⊆S0=[n]

H∈HSL
n ;U1,...,UL∈O

∣∣A −UT
1 . . .U

T
LHUL . . .U1∣∣F .

It is equivalent to

min
SL⊆⋯⊆S1⊆S0=[n]

( min
U1,...,UL∈O

∣∣UL . . .U1AUT
1 . . .U

T
L ∣∣

2
resi),

where ∣∣ ⋅ ∣∣2resi is the squared residual norm ∣∣H ∣∣2resi = ∑i≠j;(i,j)/∈SL×SL ∣Hi,j ∣
2. The solution

for Uℓ must satisfy the orthogonality constraint such that UT
ℓ
Uℓ = I . Given a fixed

SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n], we use gradient descent algorithm on the Stiefel manifold to
optimize all rotations {Uℓ}

L
ℓ=1

simultaneously, to satisfy the orthogonality constraints.

Reinforcement Learning

We formulate the problem of finding the optimal nested sequence SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n]
as learning a Markov Decision Process (MDP) that can be subsequently solved by the
gradient policy method of Reinforcement Learning (RL), in which the RL agent (or
stochastic policy) is modeled by graph neural networks (GNNs).

Learnable MMF outperforms the original MMF and the Nyström method in matrix
approximation:
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Multiresolution Analysis

The functional analytic view of wavelets is provided by Multiresolution Analysis (Mallat,
1989) is a way of filtering a function space into a sequence of subspaces

⋅ ⋅ ⋅ ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

Iteratively, each Vℓ is splitted into the orthogonal sum Vℓ = Vℓ+1 ⊕Wℓ+1:

• Approximation space: The a smoother part Vℓ+1. Each space Vℓ has an orthonor-
mal basis Φℓ ≜ {ϕ

ℓ
m}m in which each ϕ is called a father wavelet.

• Detail space: The rougher part Wℓ+1. Each space Wℓ is also spanned by an or-
thonormal basis Ψℓ ≜ {ψ

ℓ
m}m in which each ψ is called a mother wavelet.

L2(X) //⋯ //V0
//

!!

V1
//

""

V2
//

""

⋯

W1 W2 W3

Instead of diagonalizing A in a single step as in PCA, multiresolution analysis will involve
a sequence of basis transforms U1,U2, . . . ,UL, transforming A step by step as:

A→ U1AUT
1 → U2U1AUT

1 U
T
2 → ⋅ ⋅ ⋅→ UL . . .U2U1AUT

1 U
T
2 . . .U

T
L ,

Each individual rotation Uℓ ∶ Vℓ−1 → Vℓ ⊕Wℓ is a sparse basis transform that expresses
Φℓ ∪Ψℓ in the previous basis Φℓ−1 such that:

ϕℓm =
dim(Vℓ−1)
∑
i=1

[Uℓ]m,iϕ
ℓ−1
i , ψℓm =

dim(Vℓ−1)
∑
i=1

[Uℓ]m+dim(Vℓ−1),iϕ
ℓ−1
i .

In the case A is the normalized graph Laplacian of a graph G = (V,E), the wavelet
transform (up to level L) expresses a graph signal (function over the vertex domain)
f ∶ V → R, without loss of generality f ∈ V0, as:

f(v) =
L

∑
ℓ=1
∑
m
αℓmψ

ℓ
m(v) +∑

m
βmϕ

L
m(v), for each v ∈ V,

where αℓm = ⟨f,ψ
ℓ
m⟩ and βm = ⟨f, ϕ

L
m⟩ are the wavelet coefficients.
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The low index wavelets (low ℓ) are highly localized, whereas the high index ones are
smoother and spread out over large parts of the Cayley tree/graph of 46 nodes.

Wavelet Neural Networks

Analogous to the convolution based on Graph Fourier Transform (GFT) (Bruna et al.,
2014), each convolution layer k = 1, ..,K of our wavelet network transforms an input
vector f (k−1) of size ∣V ∣ × Fk−1 into an output f (k) of size ∣V ∣ × Fk as

f
(k)
∶,j = σ(W

Fk−1
∑
i=1

g
(k)
i,j W

Tf
(k−1)
∶,i ) for j = 1, . . . , Fk,

where W = [ϕ,ψ] is our wavelet basis matrix of a total of N wavelets returned from our
learnable MMF:

• L mother wavelets ψ = {ψ1, .., ψL},

• N −L father wavelets ϕ = {ϕLm =Hm,∶}m∈SL;

and g
(k)
i,j is a parameter/filter in the form of a diagonal matrix, and σ is an element-wise

linearity. Since the wavelet basis is sparse, the wavelet transform can be implemented
efficiently by sparse matrix multiplication.

Experiments

Our WNNs outperform 7/8, 7/8, 8/8, and 2/8 competing methods on molecular graph
classification datasets, respectively. Average percentages of non-zero elements of the
wavelet basis: 19.23% (MUTAG), 18.18% (PTC), 2.26% (PROTEINS), 11.43% (NCI1).
In constrast, the graph Fourier basis is completely dense.

Method MUTAG PTC PROTEINS NCI1

DGCNN (Zhang et al., 2018) 85.83 ± 1.7 58.59 ± 2.5 75.54 ± 0.9 74.44 ± 0.5
PSCN (Niepert et al., 2016) 88.95 ± 4.4 62.29 ± 5.7 75 ± 2.5 76.34 ± 1.7
DCNN (Atwood and Towsley, 2016) N/A N/A 61.29 ± 1.6 56.61 ± 1.0
CCN (Hy et al., 2018) 91.64 ± 7.2 70.62 ± 7.0 N/A 76.27 ± 4.1
GK (Shervashidze et al., 2009) 81.39 ± 1.7 55.65 ± 0.5 71.39 ± 0.3 62.49 ± 0.3
RW (Vishwanathan et al., 2010) 79.17 ± 2.1 55.91 ± 0.3 59.57 ± 0.1 N/A
PK (Neumann et al., 2016) 76 ± 2.7 59.5 ± 2.4 73.68 ± 0.7 82.54 ± 0.5
WL (Shervashidze et al., 2011) 84.11 ± 1.9 57.97 ± 2.5 74.68 ± 0.5 84.46 ± 0.5
IEGN (Maron et al., 2019) 84.61 ± 10 59.47 ± 7.3 75.19 ± 4.3 73.71 ± 2.6

MMF 86.31 ± 9.47 67.99 ± 8.55 78.72 ± 2.53 71.04 ± 1.53

Our WNNs outperforms other SOTAs in the task of node classification on citation net-
works (i.e. Cora & Citeseer). The splits are (1) 20%/20%/60%, (2) 40%/20%/40% and
(3) 60%/20%/20%. The sparsity is 4.69% on Cora and 15.25% on Citeseer.

Method Cora Citeseer
MLP 55.1% 46.5%
ManiReg (Belkin et al., 2006) 59.5% 60.1%
SemiEmb (Weston et al., 2008) 59.0% 59.6%
LP (Zhu et al., 2003) 68.0% 45.3%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2%
ICA (Getoor, 2005) 75.1% 69.1%
Planetoid (Yang et al., 2016) 75.7% 64.7%
Spectral CNN (Bruna et al., 2014) 73.3% 58.9%
ChebyNet (Defferrard et al., 2016) 81.2% 69.8%
GCN (Kipf & Welling, 2017) 81.5% 70.3%
MoNet (Monti et al., 2017) 81.7% N/A
GWNN (Xu et al., 2019) 82.8% 71.7%
MMF1 84.35% 68.07%
MMF2 84.55% 72.76%
MMF3 87.59% 72.90%
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