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Abstract

In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders
(MGVAE), the first hierarchical generative model to learn and generate graphs in a mul-
tiresolution and equivariant manner. At each resolution level, MGVAE employs higher
order message passing to encode the graph while learning to partition it into mutually ex-
clusive clusters and coarsening into a lower resolution that eventually creates a hierarchy of
latent distributions. MGVAE then constructs a hierarchical generative model to variation-
ally decode into a hierarchy of coarsened graphs. Importantly, our proposed framework is
end-to-end permutation equivariant with respect to node ordering. MGVAE achieves com-
petitive results with several generative tasks including general graph generation, molecular
generation, unsupervised molecular representation learning to predict molecular properties,
link prediction on citation graphs, and graph-based image generation. Our source code is
available at https://github.com/HyTruongSon/MGVAE.

Multiresolution Graph Networks

Multiresolution Graph Networks (MGN) constructs multiple resolutions of the input graph
via the learning to cluster algorithm in a data-driven manner. The hard clustering can be
differentible (for back-propagation) by the Gumbel-softmax trick.

V1

V2

V3
1 1

2

6

3

Aspirin C9H8O4, its 3-cluster partition and the corresponding coarsen graph.

It is desirable to have a balanced K-cluster partition in which clusters V
(ℓ)
1 , ..,V

(ℓ)
K (at the

ℓ-th resolution level) have similar sizes that are close to ∣V(ℓ)∣/K. We enforce the clustering
procedure to produce a balanced cut by minimizing the following KL divergence:
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Multiresolution Generative Models

Based on the construction of multiresolution graph network, the latent hierarchy is par-

titioned into disjoint groups, Zi = {Z
(1)
i ,Z

(2)
i , ..,Z

(L)
i } where Z

(ℓ)
i is the set of latents

at the ℓ-th resolution level. We employ the use of Hierarchical VAEs. We write our
multiresolution variational lower bound LMGVAE(ϕ, θ) on log p(G) compactly as
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In general, the overall optimization is given as follows:

min
ϕ,θ,{µ̂(ℓ),Σ̂(ℓ)}ℓ

LMGVAE(ϕ, θ;{µ̂
(ℓ), Σ̂(ℓ)}ℓ) +∑

i,ℓ

λ(ℓ)DKL(P
(ℓ)
i ∣∣Q

(ℓ)
i ),

where ϕ denotes all learnable parameters of the encoders, θ denotes all learnable parameters

of the decoders, DKL(P
(ℓ)
i ∣∣Q

(ℓ)
i ) is the balanced-cut loss for graph Gi at level ℓ, µ̂

(ℓ) and

Σ̂(ℓ) are learnable parameters of the prior in an equivariant manner.
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Hierarchy of 3-level Multiresolution Graph Network on Aspirin molecular graph.

Molecule generation

We examine the generative power of MGVAE in the challenging task of molecule genera-
tion, in which the graphs are highly structured. We demonstrate that MGVAE is the first
generative model generating graphs in a permutation-equivariant manner that is compet-
itive against autoregressive results. We train on two standard datasets: QM9 & ZINC.

Dataset Method Training size Input features Validity Novelty Uniqueness

QM9

GraphVAE

∼ 100K

Graph

61.00% 85.00% 40.90%

CGVAE 100% 94.35% 98.57%

MolGAN 98.1% 94.2% 10.4%

Autoregressive MGN
10K

100% 95.01% 97.44%

All-at-once MGVAE 100% 100% 95.16%

ZINC

GraphVAE

∼ 200K
Graph

14.00% 100% 31.60%

CGVAE 100% 100% 99.82%

JT-VAE 100% - -

Autoregressive MGN 1K 100% 99.89% 99.69%

All-at-once MGVAE 10K Chemical 99.92% 100% 99.34%

Interpolation on the latent space: we randomly select two molecules from ZINC and we
reconstruct the corresponding molecular graphs on the interpolation line.

0.711 0.715 0.756 0.751 0.879 0.805 0.742 0.769

0.710 0.790 0.850 0.859 0.730 0.901 0.786 0.729

Some generated molecules on ZINC with high QED (drug-likeness score).

General graph generation

We further examine the expressive power of hierarchical latent structure of MGVAE in
the task of general graph generation. We choose two datasets from GraphRNN paper
(You et al., 2018). MGVAE outperforms all competing methods.

COMMUNITY-SMALL EGO-SMALL

Model Degree Cluster Orbit Degree Cluster Orbit

GraphVAE 0.35 0.98 0.54 0.13 0.17 0.05
DeepGMG 0.22 0.95 0.4 0.04 0.10 0.02
GraphRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF 0.20 0.20 0.11 0.03 0.10 0.001
GraphAF 0.06 0.10 0.015 0.04 0.04 0.008

MGVAE 0.002 0.01 0.01 1.74e-05 0.0006 6.53e-05

Graph generation results depicting Maximum Mean Discrepancy (MMD) for various
graph statistics between the test set and generated graphs.

The top row and the bottom row show some generated and training examples on the
EGO-SMALL dataset, respectively.

Link prediction on citation graphs

We demonstrate the ability of the MGVAE models to learn meaningful latent embeddings
on a link prediction task on popular citation network datasets Cora and Citeseer (Sen et
al., 2008). MGVAE outperforms all other methods.

Dataset Cora Citeseer
Method AUC (ROC) AP AUC (ROC) AP

SC 84.6 ± 0.01 88.5 ± 0.00 80.5 ± 0.01 85.0 ± 0.01
DW 83.1 ± 0.01 85.0 ± 0.00 80.5 ± 0.02 83.6 ± 0.01
VGAE 90.97 ± 0.77 91.88 ± 0.83 89.63 ± 1.04 91.10 ± 1.02
MGVAE (Spectral) 91.19 ± 0.76 92.27 ± 0.73 90.55 ± 1.17 91.89 ± 1.27
MGVAE (K-Means) 93.07 ± 5.61 92.49 ± 5.77 90.81 ± 1.19 91.98 ± 1.02
MGVAE 95.67 ± 3.11 95.02 ± 3.36 93.93 ± 5.87 93.06 ± 6.33

Citation graph link prediction results (AUC & AP).

Method Min Max STD KL divergence

Spectral 1 3320 292.21 4.51
K-Means 1 326 41.69 0.74
Learn to cluster 11 38 4.93 0.01

Learning to cluster algorithm returns balanced cuts on Citeseer.

Graph-based image generation

We apply MGVAE into the task of image generation by representing an image as a grid
graph. MGVAE outperforms all the baselines for the highest resolution generation on
MNIST. Importantly, this is the only model able to generate on multiple resolutions.

Method FID↓ (32 × 32) FID↓ (16 × 16) FID↓ (8 × 8)

DCGAN 113.129

N/A N/A
VEEGAN 68.749
PACGAN 58.535
PresGAN 42.019
MGVAE 39.474 64.289 39.038

Quantitative evaluation of the generated set by FID metric for each resolution

Generated examples at 32 × 32 and 16 × 16 resolutions

Supervised molecular properties prediction

Furthermore, to demonstrate the comprehensiveness of MGN, we apply our model in a
supervised regression task to predict the solubility (LogP) on the ZINC dataset. The
baselines include Graph Attention Networks (GAT) (Velikovi et al., 2018), MoNet (Monti
et al., 2017), Disentangled GCNs (Ma et al., 2019), Factorizable GCNs (Yang et al.,
2020), and GatedGCNE (Dwivedi et al., 2020). Our supervised result shows that MGN
outperforms the state-of-the-art models in the field with a margin of 20%.

Method MLP GCN GAT MoNet DiscenGCN FactorGCN GatedGCNE MGN
MAE 0.667 0.503 0.479 0.407 0.538 0.366 0.363 0.290


