

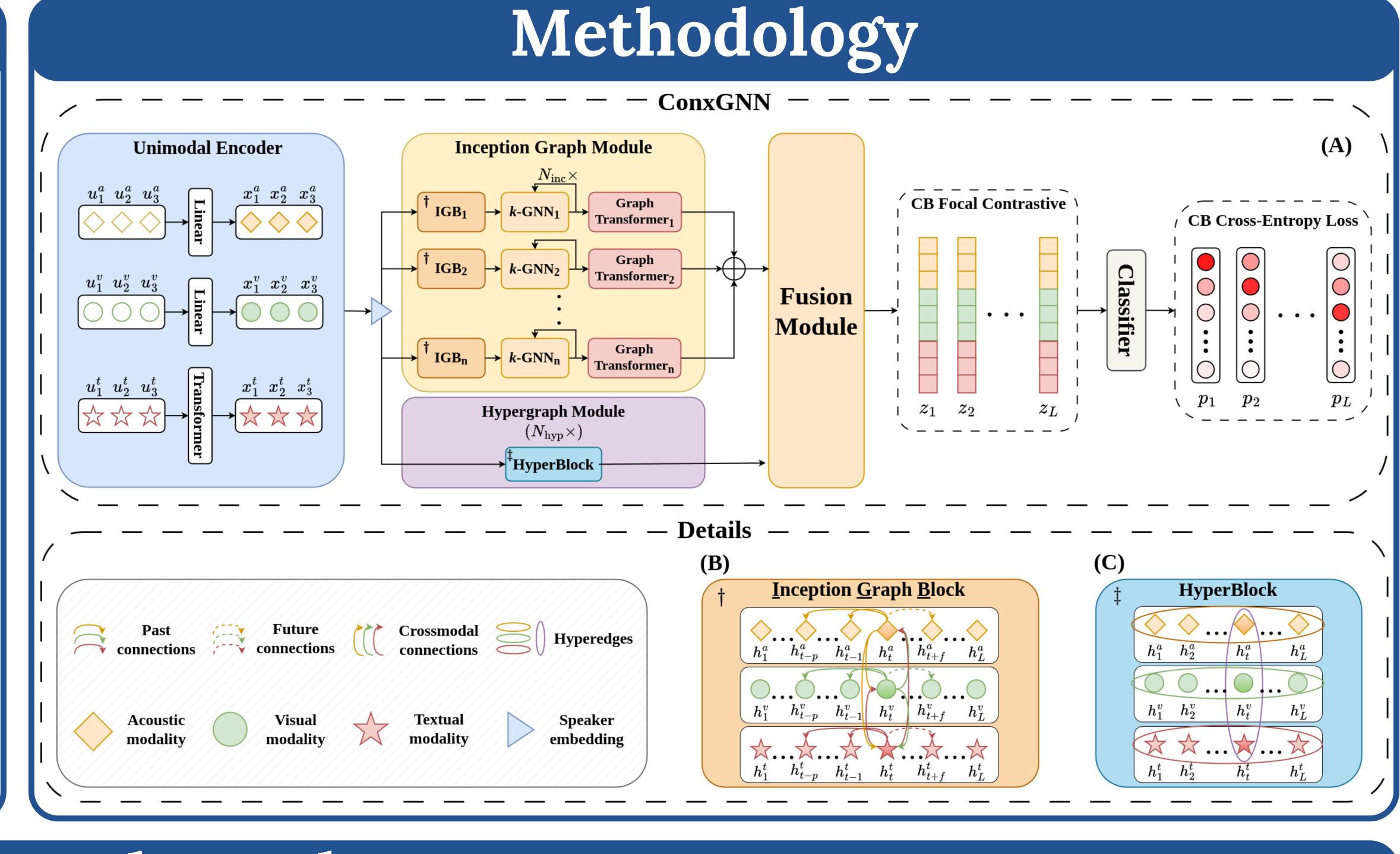
Effective Context Modeling Framework for Emotion Recognition in Conversations

Cuong Tran Van*, Thanh V. T. Tran*, Van Nguyen, Truong Son Hy

Challenges & Proposals

Existing SOTA methods are GNN-based, which:

- Use **naive pooling mechanism** on fine-grained features. Perform cross-attention to fuse representations:


 $ext{CA}_i^{ au o t} = ext{Softmax}igg(rac{(extbf{W}_Q extbf{f}_i^ au)^ op(extbf{W}_K extbf{f}_i^t)}{\sqrt{d_1}}igg) extbf{W}_V extbf{f}_i^t$

 $\hat{\mathbf{f}}_{i}^{t} = \mathbf{f}_{i}^{t} + \mathbf{CA}_{i}^{v \to t} + \mathbf{CA}_{i}^{a \to t}$ • Overlook the issue of **class imbalance**. Inject a weighting factor to loss functions. $w_c(i)=(1-eta)/(1-eta^{n_i}); \quad eta\in[0,1)$

Main results. ConxGNN outper SOTA methods in MELD and IEM

	Method	Network	Acc (%)
EMOCAP	DialogueGCN [6] DialogueRNN [5] ICON [3] COGMEN [23] CORECT [9]	GNN-based Non-GNN Non-GNN GNN-based GNN-based	55.29 57.22 63.10 64.02 66.20
Γ	ConxGNN (ours)	GNN-based	68.52
MELD	DialogueGCN [6] DialogueRNN [5] MM-DFN [24] M ³ Net [25]	GNN-based Non-GNN GNN-based GNN-based	42.75 61.88 66.09 65.75
	ConxGNN (ours)	GNN-based	66.28

• Assume **pairwise relationships** → Hypergraph Module.

Experimental Results

rforms	Ablation Studies. Co				
MOCAP	Method	IEM	OC		
$\mathbf{D}(\mathbf{M})$		Acc (%)	W		
w-F1 (%) 55.16 55.29 63.8 63.78 66.39	ConxGNN – w/o IGM – w/o HM – w/o crossmodal – w/o re-weight	68.52 38.48 64.06 64.21 63.13			
68.64 41.67					

61.63

64.16

65.00

65.69

Method	
	Acc
ConxGNN	68
– w/o IGM	38
– w/o HM	64

es. Components Analysis								
IEMOCAP MELD		ELD	A 1. 1 -	4 • • •	1.	Τ		
(%)	w-F1 (%)	Acc (%)	w-F1 (%)			tudies.	–	
.52	68.64	66.28	65.69	Inception Graph Module with different number of branches				
.48	25.68	50.84	40.21					
.06	63.92	65.11	64.87					
.21 .13	64.31 63.90	66.15 65.30	65.69 65.10	# Blocks IEMOCAP MELD				ELD
	00170	00.00			Acc (%)	w-F1 (%)	Acc (%)	w-F1 (%)
	STERIE		s sa 🗖 🗖		65.27	65.34	64.36	62.61
- 22	A:0"			1	65.29	65.31	64.27	62.65
75°		n na star i se	- CE 20, C		65.37	65.55	64.70	62.86
- a	IV		EEE		66.30	66.64	65.34	63.49
-ALL				2	66.02	65.88	65.40	63.44
					66.74	66.91	65.81	63.88
				3	68.52	68.64	66.28	65.69

2025 **Celebrating Signal Processing**