# HierarchyNet: Learning to Summarize Source Code with Heterogeneous Representations

Minh Huynh Nguyen<sup>•</sup>, Nghi D. Q. Bui<sup>•</sup>, Truong Son Hy<sup>•</sup>, Long Tran Thanh<sup>•</sup>, Tien N. Nguyen<sup>•</sup> <sup>•</sup> FPT Software AI Center, Viet Nam <sup>•</sup> Department of Computer Science, Fulbright University, Viet Nam <sup>•</sup> Department of Mathematics and Computer Science, Indiana State University, USA <sup>•</sup> Department of Computer Science, University of Warwick, UK <sup>•</sup> Computer Science Department, The University of Texas at Dallas, USA

The 18th Conference of the European Chapter of the Association for Computational Linguistics

#### Introduction

#### 2 Motivation

- 3 Methodology
- 4 Automated Evaluation
- 5 Human Evaluation
- 6 Analysis
- Qualitative Example
- 8 Conclusion & Future Work

In this paper, we propose a novel code summarization approach utilizing:

- Heterogeneous Code Representations (HCRs) adeptly capturing essential code features at lexical, syntactic, and semantic levels within a hierarchical structure.
- **HierarchyNet** processing each layer of the HCR separately, employing a Heterogeneous Graph Transformer, a Tree-based CNN, and a Transformer Encoder.

#### Introduction



- 3 Methodology
- 4 Automated Evaluation
- 5 Human Evaluation
- 6 Analysis
- Qualitative Example
- 8 Conclusion & Future Work

## Motivation

- Existing code summarization approaches often overlook the critical consideration of the interplay of dependencies among code elements and code hierarchy.
- Effective summarization necessitates a holistic analysis of code snippets from three distinct aspects: lexical, syntactic, and semantic information.

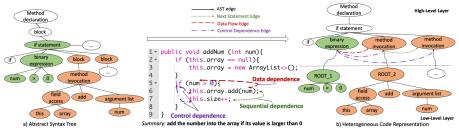



Figure: Motivating Example

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Introduction

#### 2 Motivation

### 3 Methodology

- 4 Automated Evaluation
- 5 Human Evaluation

#### 6 Analysis

- Qualitative Example
- 8 Conclusion & Future Work

## Methodology

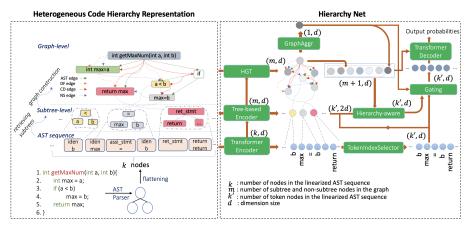



Figure: Overview of HierarchyNet

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

**Heterogeneous Code Representation** The first layer, Linearized AST Sequence, comprises serialized AST nodes. The second, Subtree-level, represents statement and expression-level elements. Lastly, the Graph level represents a high-level graph with semantic edges like dependencies.

**HierarchyNet** HCR utilizes neural networks for each layer. Information is aggregated across layers using a Hierarchy-aware cross-attention layer, with a gating layer to balance lexical and hierarchical context before input to a Transformer Decoder.

#### Introduction

#### Motivation

- 3 Methodology
- 4 Automated Evaluation
  - 5 Human Evaluation

#### 6 Analysis

- Qualitative Example
- 8 Conclusion & Future Work

- **Datasets:** TL-CodeSum, DeepCom, FunCom-50, and FunCom, which are well-known code summarization benchmarks.
- Metrics: BLEU, Rouge-L, Meteor, Cider, and F1.
- Baselines: various baselines categorized by three groups: training from scratch (NCS, CAST, and PA-former), fine-tuning (CodeBERT-base and CodeT5-base), in-context learning for LLMs (CodeLlama, StarCoder, and CodeGen 2B).

- **Datasets:** TL-CodeSum, DeepCom, FunCom-50, and FunCom, which are well-known code summarization benchmarks.
- Metrics: BLEU, Rouge-L, Meteor, Cider, and F1.
- **Baselines:** various baselines categorized by three groups: training from scratch (NCS, CAST, and PA-former), fine-tuning (CodeBERT-base and CodeT5-base), in-context learning for LLMs (CodeLlama, StarCoder, and CodeGen 2B).

- **Datasets:** TL-CodeSum, DeepCom, FunCom-50, and FunCom, which are well-known code summarization benchmarks.
- Metrics: BLEU, Rouge-L, Meteor, Cider, and F1.
- Baselines: various baselines categorized by three groups: training from scratch (NCS, CAST, and PA-former), fine-tuning (CodeBERT-base and CodeT5-base), in-context learning for LLMs (CodeLlama, StarCoder, and CodeGen 2B).

## Automated Evaluation

| Model                       | DeepCom |        |         | FunCom-50 |        |         |
|-----------------------------|---------|--------|---------|-----------|--------|---------|
|                             | BLEU    | Meteor | Rouge-L | BLEU      | Meteor | Rouge-L |
| Training from scratch       |         |        |         |           |        |         |
| NCS                         | 37.13   | 25.05  | 54.80   | 43.36     | 27.54  | 60.41   |
| TPTrans                     | 37.25   | 25.02  | 55.00   | 43.45     | 27.61  | 60.57   |
| CAST                        | 38.03   | 25.27  | 54.95   | 43.58     | 27.67  | 60.52   |
| PA-former                   | 39.67   | 26.21  | 56.18   | 44.65     | 28.27  | 61.45   |
| Fine-tuning                 |         |        |         |           |        |         |
| CodeBERT-base               | 37.42   | 25.49  | 55.07   | 46.20     | 30.51  | 61.43   |
| CodeT5-base                 | 38.60   | 26.30  | 56.31   | 46.88     | 30.72  | 61.47   |
| In-context Learning         |         |        |         |           |        |         |
| CodeGen-Multi 2B (two-shot) | 17.81   | 13.81  | 24.62   | 21.78     | 14.78  | 26.89   |
| StarCoder (two-shot)        | 19.29   | 16.07  | 28.09   | 25.18     | 18.45  | 32.59   |
| CodeLlama 13B (two-shot)    | 20.29   | 16.14  | 39.63   | 21.52     | 16.52  | 36.49   |
| HierarchyNet                | 43.64   | 29.22  | 59.00   | 51.12     | 34.13  | 65.43   |

Table: Evaluation Results on DeepCom and FunCom-50

æ

#### Introduction

- 2 Motivation
- 3 Methodology
- Automated Evaluation
- 5 Human Evaluation
  - 6 Analysis
  - Qualitative Example
- 8 Conclusion & Future Work

To consolidate the effectiveness of our method, we carry out a user study, utilizing a linear 3-point rating scale. Similar to previous work, we adopt two metrics:

- naturalness: grammar, fluency, and readability of generated summaries
- *usefulness:* to what extent generated summaries are useful to comprehend the code.

| Methods      | Naturalness | Usefulness |  |  |
|--------------|-------------|------------|--|--|
| CAST         | 2.76        | 2.48       |  |  |
| PA-former    | 2.77        | 2.50       |  |  |
| HierarchyNet | 2.81        | 2.52       |  |  |

Table: Results of User Study

#### Introduction

- 2 Motivation
- 3 Methodology
- 4 Automated Evaluation
- 5 Human Evaluation

#### 6 Analysis

- Qualitative Example
- 8 Conclusion & Future Work

**Study on HierarchyNet** We aim to demonstrate the significance of our proposed layers in HierarchyNet on the TL-CodeSum dataset.

| Method                 | BLEU         | Meteor | Rouge-L      | Cider |
|------------------------|--------------|--------|--------------|-------|
| HierarchyNet           | <b>48.01</b> | 30.30  | <b>57.90</b> | 4.20  |
| w/o Hierarchy-aware    | 46.63        | 29.49  | 56.63        | 4.03  |
| w/o TokenIndexSelector | 45.70        | 28.39  | 55.06        | 3.93  |

Table: Ablation Study of HierarchyNet

ヨト・イヨト

Image: Image:

**Comparisions with LLMs** Given that LLMs may potentially generate responses longer and more detailed than the ground truth, we aim to demonstrate the fairness of our evaluation.

| Model                  | Average word count |
|------------------------|--------------------|
| StarCoder (zero-shot)  | 10.64              |
| StarCoder (two-shot)   | 8.12               |
| CodeGen 2B (zero-shot) | 4.95               |
| CodeGen 2B (two-shot)  | 8.49               |
| References             | 9.97               |

Table: Comparative Results with LLMs regarding the Average Word Count of Summaries

#### Introduction

- 2 Motivation
- 3 Methodology
- 4 Automated Evaluation
- 5 Human Evaluation
- 6 Analysis
- Qualitative Example
  - 8 Conclusion & Future Work

```
1 - @Override public void start (Stage stage) throws Exception {
```

- 2 CategoryDataset dataset = createDataset();
- 3 JFreeChart chart = createChart(dataset);
- 4 ChartViewer viewer = new ChartViewer(chart);
- 5 viewer.addChartMouseListener(this);
- 6 stage.setScene(new Scene(viewer));
- 7 stage.setTitle(<str>);
- 8 stage.setWidth(700);
- 9 stage.setHeight(390);
- 10 stage.show();
- 11 }

#### Figure: A code snippet sample

| ID | Options                                                                                   | Sentence                                                                |
|----|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1  | Tokens                                                                                    | creates a chart bar chart ( clicked )                                   |
| 3  | Tokens + Subtrees<br>Tokens + Subtrees + Graph (only AST edges)                           | creates and displays a chart viewer<br>adds a chart viewer to the stage |
| 4  | ${\sf Tokens} + {\sf Subtrees} + {\sf Graph} \ ({\sf full of edge types}) \ ({\sf ours})$ | adds a chart viewer to the stage and displays it                        |
|    | Ground-truth                                                                              | adds a chart viewer to the stage and displays it                        |

Table: Summaries from several variants of HCRs

#### Introduction

- 2 Motivation
- 3 Methodology
- 4 Automated Evaluation
- 5 Human Evaluation
- 6 Analysis
- 7 Qualitative Example
- 8 Conclusion & Future Work

We introduce an innovative framework for code summarization, combining HCRs and HierarchyNet.

- HCRs inherently capture key features of source code from lexical, syntactic, and semantic meanings,
- HierarchyNet is tailored to processing HCRs.

For future work, we aim to investigate:

- Provide an analysis of the explainability,
- Evaluate on other code-related tasks.

Our implementation can be found at:

https://github.com/FSoft-AI4Code/HierarchyNet

We introduce an innovative framework for code summarization, combining HCRs and HierarchyNet.

- HCRs inherently capture key features of source code from lexical, syntactic, and semantic meanings,
- HierarchyNet is tailored to processing HCRs.

For future work, we aim to investigate:

- Provide an analysis of the explainability,
- Evaluate on other code-related tasks.

Our implementation can be found at:

https://github.com/FSoft-AI4Code/HierarchyNet

We introduce an innovative framework for code summarization, combining HCRs and HierarchyNet.

- HCRs inherently capture key features of source code from lexical, syntactic, and semantic meanings,
- HierarchyNet is tailored to processing HCRs.

For future work, we aim to investigate:

- Provide an analysis of the explainability,
- Evaluate on other code-related tasks.

Our implementation can be found at:

https://github.com/FSoft-AI4Code/HierarchyNet