

VIDEBERTA: A POWERFUL PRE-TRAINED LANGUAGE MODEL FOR VIETNAMESE

Abstract

Although many successful pre-trained language models based on Transformer have been widely proposed for the English language, there are still few pre-trained models for Vietnamese, a low-resource language, that perform good results on downstream tasks, especially Question answering. This paper presents ViDeBERTa, a new pre-trained monolingual language model for Vietnamese, with three versions - ViDeBERTa_{xsmall}, ViDeBERTa_{base}, and ViDeBERTa_{large}, which are pre-trained on a large-scale corpus of high-quality and diverse Vietnamese texts using DeBERTa architecture. We fine-tune and evaluate our model on three important natural language downstream tasks, Part-of-speech tagging, Namedentity recognition, and Question answering. The empirical results demonstrate that ViDe-BERTa, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese-specific natural language understanding tasks. Notably, ViDeBERTabase with 86M parameters, which is only about 23% of PhoBERT_{large} with 370M parameters, still performs the same or better results than the previous state-of-the-art model. Our ViDeBERTa models are available at: https://github.com/HySonLab/ViDeBERTa.

Motivations and Contributions

Motivations

- Previous pre-trained language models, based on BERT (Devlin et al., 2019) architecture, were trained on relatively small Vietnamese datasets, while PLMs can be significantly improved by using more pre-training data.
- Recently, DeBERTa (He et al., 2020, 2021) architecture using several novel techniques can significantly outperform BERT.
- Question Answering, including Machine Reading Comprehension and Open-domain Question Answering, is an impactful task, but few pre-trained language models for Vietnamese produce efficient results.

Contributions

- We present an improved large-scale pre-trained language model, namely ViDeBERTa, for Vietnamese based on DeBERTa architecture and pre-training techniques.
- We conduct extensive experiments to verify the performance of our pre-trained model compared to previous models in terms of Vietnamese language modeling.
- We release our model as an effective pre-trained model for Vietnamese NLP applications and research

ViDeBERTa model

How we trained ViDeBERTa?

Pre-training data We use a large corpus CC100 Dataset of 138GB uncompressed texts as a pre-training dataset. We perform word and sentence segmentation using a Vietnamese toolkit PyVi on the pre-training dataset. After that, we use a pre-trained SentencePiece tokenizer from DeBERTaV3 to segment these sentences with sub-word units, which have a vocabulary of 128K sub-word types.

Model architecture Our model follows the DeBERTaV3 (He et al., 2021) architecture, which is trained using the self-supervised learning objectives of MLM and RTD task and a new weight-sharing Gradient-Disentangled Embedding Sharing (GDES) to enhance the performance of the model. We present three versions: ViDeBERTa_{xsmall}, ViDeBERTa_{base}, and ViDeBERTa_{large} with 22M, 86M, and 304M backbone parameters, respectively.

Optimization We use Adam as the optimizer with weight decay and use a global batch size of 8,192 across 32 A100 GPUs (80GB each) and a peak learning rate of 6e-4 for both ViDeBERTa_{xsmall} and ViDeBERTa_{base}, while peak learning rate of 3e-4 was used for ViDeBERTa_{large}.

Cong Dao Tran * ¹, Nhut Huy Pham * ¹, Anh Nguyen ², Truong Son Hy ^{† 3}, and Tu Vu ⁴ FPT Software AI Center¹, Microsoft², University of California San Diego³, University of Massachusetts Amherst⁴ Co-first author *, Correspondent to tshy@ucsd.edu

POS tagging and NER tasks

For POS tagging and NER tasks, we use standard benchmarks of the VLSP POS tagging dataset and the PhoNER dataset. A linear layer for prediction is appended on top of our model architecture (the last Transformer layer). We then use Adam to optimize our model for fine-tuning with a fixed learning rate of 1e-5 and batch size of 16.

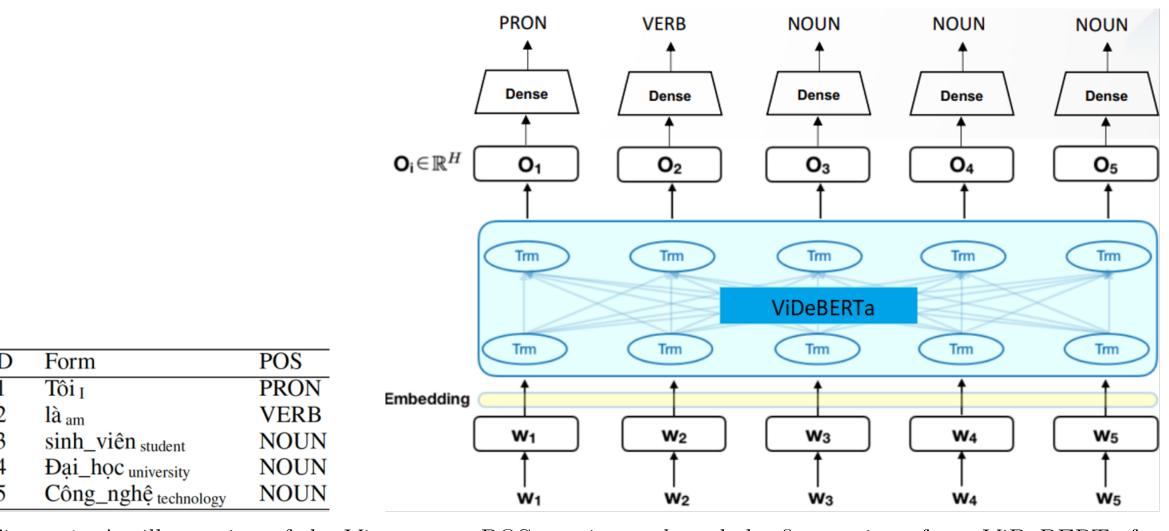
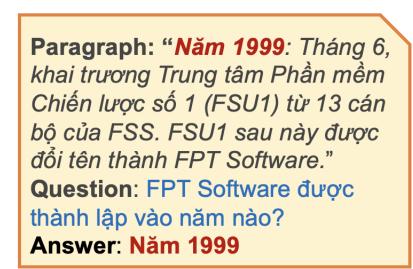


Figure 1: An illustration of the Vietnamese POS tagging task and the fine-tuning of our ViDeBERTa for this task.

Question Answering tasks

We evaluate our model on two main tasks for Question Answering: Machine Reading Comprehension (MRC) and Open-domain Question Answering (ODQA). We use the Vi-QuAD corpus for assessing these tasks.

Machine reading comprehension



C T ₁	Star T_N $T_{[SEP]}$ $T_1^{,1}$
	ViDeBERTa
E _[CLS] E ₁ [CLS] Tok 1	E _N E _[SEP] E'
Question	Pa

Figure 2: An illustration of the Vietnamese Machine Reading Comprehension task and the fine-tuning of our ViDeBERTa for this task.

Open-domain Question Answering For ODQA, we propose a new framework ViDeBERTa-QA, that uses a BM25 as a retriever and ViDeBERTa as a text reader.

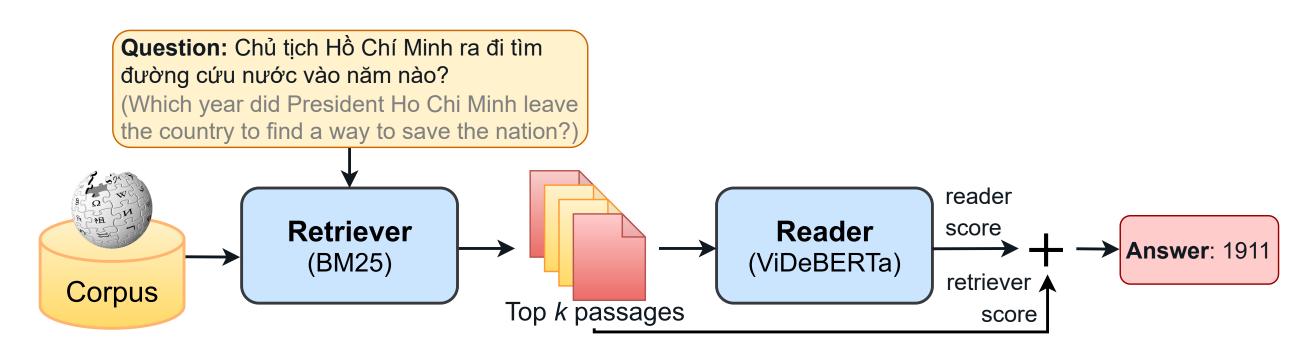
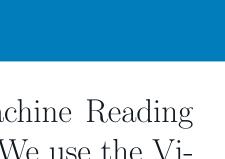
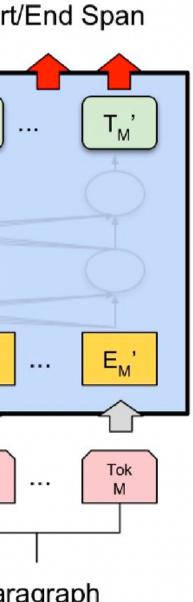


Figure 3: An overview of ViDeBERTa-QA framework for Vietnamese Open-domain Question Answering.

ID Form 1 Tôi_I

Experimental Results





aragraph

POS tagging, NER, and MRC tasks: Our model produces significantly better results than the baselines and achieves new SOTA performance on these tasks.

	POS	NER
Model	Acc.	F_1
$XLM-R_{base}$	96.2^{\dagger}	_
$XLM-R_{large}$	96.3^{\dagger}	93.8*
$PhoBERT_{base}$	96.7^{\dagger}	94.2*
$PhoBERT_{large}$	96.8^{\dagger}	94.5^{\star}
$ViT5_{base1024-length}$	_	94.5^{\star}
$ViT5_{large1024-length}$	_	93.8*
ViDeBERTa _{xsmall}	96.4	93.6
ViDeBERTa _{base}	96.8	94.5
ViDeBERTa _{large}	97.2	95.3

ODQA task: ViDeBERTa-QA achieves better scores than the previous models, including BERTsini, DrQA, and SOTA XLMRQA at the top k passages, selected by retrievers, is 10 and 20.

	Top k selected passages			
1	5	10	20	
37.86	37.86	37.86	37.86	
55.55	58.30	57.98	58.09	
61.83	64.99	64.49	64.49	
52.76	56.24	56.93	57.40	
58.55	61.37	61.89	62.43	
61.23	63.57	64.89	65.34	
	37.86 55.55 61.83 52.76 58.55	37.86 37.86 55.55 58.30 61.83 64.99 52.76 56.24 58.55 61.37	37.86 37.86 37.86 55.55 58.30 57.98 61.83 64.99 64.49 52.76 56.24 56.93 58.55 61.37 61.89	

Discussion

- ViDeBERTa_{base} (86M) with fewer parameters but still perform slightly better than XLM- R_{large} and competitively the same as the previous SOTA PhoBERT_{large}. The possible reasons are: i) our model inherits the robustness of DeBERTaV3 architecture and pre-training techniques, demonstrating superior performance; ii) using more high-quality pre-training data (138GB) can help ViDeBERTa significantly improve its performance compared to PhoBERT (20GB).
- ViDeBERTa outperforms PhoBERT by a large margin. Our models are more scalable than PhoBERT for long contexts since PhoBERT set a maximum length of 256 subword tokens for both versions, while ViDeBERTa set a larger one of 512.
- The results obtained by ViDeBERTa-QA on ODQA also suggest that our framework achieves the best performance with large top k passages selected by the retriever (i.e., k = 10, 20).

Reference

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pretraining of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. Deberta: Decodingenhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654. Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. Debertav3: Improving deberta using electra-style pretraining with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543.

MRC
F_1
82.0^{\ddagger}
87.0^{\ddagger}
80.1
83.5
_

81.3 85.7 **89.9**