
Covariant Compositional Neural Networks For Learning Graphs

Truong Son Hy†, Shubhendu Trivedi‡, Horace Pan†, Brandon M. Anderson†, Risi Kondor†

†Department of Computer Science, University of Chicago ‡Toyota Technological Institute at Chicago

Covariant Compositional Neural Networks For Learning Graphs

Truong Son Hy†, Shubhendu Trivedi‡, Horace Pan†, Brandon M. Anderson†, Risi Kondor†

†Department of Computer Science, University of Chicago ‡Toyota Technological Institute at Chicago

Abstract

We propose Covariant Compositional Networks (CCNs), a novel neural network
architecture for learning on graphs. CCNs use tensor representations for vertex fea-
tures which can then be manipulated with permutation covariant tensor operations
as opposed to the standard symmetric operations used in other graph neural network
models. These permutation covariant operations allow us to build more expressive
graph representations while still maintaining permutation invariance.

For learning small-scale molecular graphs, we investigate the efficacy of CCNs
in estimating Density Functional Theory (DFT), a widely used but expensive
approach to compute the electronic structure of matter. We obtain promising results
in for this task and outperform other graph learning models on the Harvard Clean
Energy Project [HCEP] and QM9 [QM9] molecular datasets.

Compositional Scheme

Let G be an object with n elementary parts (atoms) E = {e1, .., en}. A composi-
tional scheme for G is a directed acyclic graph (DAG)M in which each node ν is
associated with some subset Pν of E (these subsets are called parts of G) in such a
way that:

1. In the bottom level, there are exactly n leaf nodes in which each leaf node ν is
associated with an elementary atom e. Then Pν contains a single atom e.

2. M has a unique root node νr that corresponds to the entire set {e1, .., en}.

3. For any two nodes ν and ν′, if ν is a descendant of ν′, then Pν is a subset of Pν′.

Covariance

For a graph G with the comp-net N , and an isomorphic graph G′ with comp-net
N ′, let ν be any neuron of N and ν′ be the corresponding neuron of N ′. Assume
that Pν = (ep1, .., epm) while Pν′ = (eq1, .., eqm), and let π ∈ Sm be the permutation
that aligns the orderings of the two receptive fields, i.e., for which eqπ(a)

= epa. We

say that N is covariant to permutations if for any π, there is a corresponding
function Rπ such that fν′ = Rπ(fν).

First-order Message Passing

We call standard message passing zero’th order message passing where each
vertex is represented by a feature vector of length c (or c channels). When we sum
together vertex features of this form, we lose identity information on where certain
vertex features originated from. Hence, we propose first order message passing

by instead representing each vertex v by a matrix: f `v ∈ R|P`v|×c. Each row of this
feature matrix corresponds to a vertex in the neighborhood of v.

We say that ν is a first order covariant node in a comp-net if under the
permutation of its receptive field Pν by any π ∈ S|Pν|, its activation transforms as
fν 7→ Pπfν, where Pπ is the permutation matrix:

[Pπ]i,j ,

{
1, π(j) = i

0, otherwise
(1)

The transformed activation fν′ will be: [fν′]a,s = [fν]π−1(a),s where s is the channel.

Second-order Message Passing

Instead of representing a vertex with a feature matrix (a 2nd order tensor) as done in first order

message passing, we can represent it by a 3rd order tensor f `v ∈ R|P`v|×|P`v|×c and require these
feature tensors to transform covariantly.

We say that ν is a second order covariant node in a comp-net if under the permu-
tation of its receptive field Pν by an π ∈ S|Pν|, its activation transforms as fν 7→ PπfνP

T
π .

The transformed activation fν′ will be:

[fν′]a,b,s = [fν]π−1(a),π−1(b),s

where s is the channel index.

Algorithm

Input: G, lν, L
Parameters: Matrices W0 ∈ Rc×c, W1, ..,WL ∈ R(18c)×c and biases b0, .., bL.
F 0
ν ← Υ(W0lν + b01) (∀ν ∈ V )

Reshape F 0
ν to 1× 1× c (∀ν ∈ V )

for ` = 1, .., L do
for ν ∈ V do

F `w→ν ← χ× F `−1
w × χT where χ = χ`w→ν (∀w ∈ P`ν)

Apply virtual tensor contraction algorithm with inputs {F `w→ν|w ∈ P`ν} and the restricted

adjacency matrix A ↓P`ν to compute F
`
ν ∈ R|P`ν|×|P`ν|×(18c).

F `ν ← Υ(F
`
ν ×W` + b`1)

end
end

F `←
∑
ν∈V Θ(F `ν) (∀`)

Output: Graph feature F ←
L⊕̀
=0
F ` ∈ R(L+1)c. Use F for downstream tasks.

Tensor activations for our CCN-2D architecture applied to a C2H4 molecular graph. The tensor
activations of each vertex in a CCN 2D model are shown after 0, 1, and 2 rounds of message
passing in (a), (b) and (c). Here the rows and columns correspond to the size of the receptive
field, whereas the depth of the tensor is determined by the number of channels.

Geometry of the tensor activations in zeroth (CCN 0D), first (CCN 1D), and second (CCN 2D)
order message passing algorithms. Vertices have a vector (zeroth order), matrix (first order),
and second order tensor representations corresponding as shown in (a), (b), and (c).

Result

MAE and RMSE results of each model on predicting the Power Conversion Efficiency
(PCE) for graphs on the test set of HCEP. Lower values are better.

Test MAE Test RMSE

Lasso 0.867 1.437
Ridge regression 0.854 1.376
Random forest 1.004 1.799
Gradient boosted trees 0.704 1.005
WL graph kernel 0.805 1.096
Neural graph fingerprints 0.851 1.177
PSCN 0.718 0.973
CCN 1D 0.216 0.291
CCN 2D 0.340 0.449

Regression results of CCN-1D architecture applied to QM9(b). A comparison be-
tween CCN prediction error and DFT error known as “chemical accuracy.”

Target CCNs DFT error Physical unit

alpha 0.19 0.4 Bohr3

Cv 0.06 0.34 cal/mol/K
G 0.05 0.1 eV

gap 0.11 1.2 eV
H 0.05 0.1 eV

HOMO 0.08 2.0 eV
LUMO 0.07 2.6 eV

mu 0.43 0.1 Debye

omega1 2.54 28 cm−1

R2 5.03 - Bohr2

U 0.06 0.1 eV
U0 0.05 0.1 eV

ZPVE 0.0043 0.0097 eV

2D t-SNE visualization of learned CCNs molecular features on HCEP dataset:
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