
E(3)-Equivariant Mesh Neural Networks

Thuan Anh Trang ∗,1, Ngo Nhat Khang ∗,1, Daniel Levy ∗,2, Thieu N. Vo 3, Siamak Ravanbakhsh 2,
and Truong Son Hy 1,4,†

1 FPT Software AI Center, 2 McGill University / MILA, 3 Ton Duc Thang University, 4 Indiana State University
∗ Co-first authors † Correspondence to TruongSon.Hy@indstate.edu

;

E(3)-Equivariant Mesh Neural Networks

Thuan Anh Trang ∗,1, Ngo Nhat Khang ∗,1, Daniel Levy ∗,2, Thieu N. Vo 3, Siamak Ravanbakhsh 2,
and Truong Son Hy 1,4,†

1 FPT Software AI Center, 2 McGill University / MILA, 3 Ton Duc Thang University, 4 Indiana State University
∗ Co-first authors † Correspondence to TruongSon.Hy@indstate.edu

;

Abstract

Although recent works have addressed the need for geometric deep learning on 3D meshes,
we observe that the complexities in many of these architectures do not translate to practical
performance, and simple deep models for geometric graphs are competitive in practice. Mo-
tivated by this observation, we minimally extend the update equations of E(n)-Equivariant
Graph Neural Networks (EGNNs) [1] to incorporate mesh face information, and further
improve it to account for long-range interactions through hierarchy. The resulting archi-
tecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated
equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing.

Background

Geometric Feature on Meshes When processing a mesh, our method accounts for its
points, edges and faces. Each point p ∈ P is associated with its 3D coordinate vector
xp ∈ R3. Meanwhile, a face f ∈ F can have scalar and vector attributes corresponding to
the area and normal vector, denoted by af and nf respectively. Considering a triangle face
f = (p1, p2, p3), the normal vector and the area are given by nf = (xp2 −xp1)× (xp3 −xp1)
and af =

∣∣nf ∣∣
2 respectively. By convention, we can generally choose the normal vector to

point outwards.
Equivariant Graph Neural Networks A geometric graph is defined as G = (V ,E) with
two main components: vertices vi ∈ V and edges eij ∈ E . Each vertex vi is associated

with scalar invariant features hi ∈ Rd and n-dimensional equivariant coordinates xi ∈ Rn.
To make the messages invariant to E(n) transformations, the formula for EGNN’s layer is
proposed as:

mij = ϕe(hli, h
l
j, ∥x

l
i − x

l
j∥, eij), (1)

where the superscript l denotes the layer number. Then, the scalar and vector features at
the layer l + 1 are updated by the following equations:

hl+1i = ϕh(hli, ∑
(i,j)∈E

mij) (2)

xl+1i = xli + ∑
j∈ϵ(i)

(xli − x
l
j)ϕx(mij), (3)

Here, ϕh and ϕe are multi-layer perceptrons (MLPs) and ϵ(i) = {j ∣ (i, j) ∈ E} denotes the
set of neighbours of node i.

Figure 1: EMNN Architecture.

References

[1] Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E(n) equivariant graph
neural networks. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learn- ing, volume 139 of Proceedings of Machine Learning
Research, pages 9323–9332. PMLR.

Method

Equivariant Graph Neural Networks Considering a triangle face (i, j, k), we define a
surface-aware message from this face to node i as:

mijk = ϕs(hli, h
l
j + h

l
k, ∣∣(x

l
j − x

l
i) × (x

l
k − x

l
i)∣∣), (4)

where ϕs is an MLP. The invariant feature for node i is created by aggregating all such
messages from neighbouring faces τ(i) = {(j, k)∣(i, j, k) ∈ F}, and neighbouring edges
ϵ(i) = {j∣(i, j) ∈ E}:

hl+1i = ϕh
⎛
⎜
⎝
hli, ∑

j∈ϵ(i)
mij, ∑

(j,k)∈τ(i)
mijk

⎞
⎟
⎠
. (5)

Here, the edge message mij is the same as EGNN in Eq. (4). The equivariant feature

xl+1i is calculated similarly to EGNN update (5), with the difference that the normal to
neighbouring faces is used as an equivariant vector in the update. This vector is scaled by
the invariant factor based on mijk:

xl+1i = xli + ∑
j∈ϵ(i)

(xli − x
l
j)ϕx(mij) + ∑

j,k∈τ(i)
((xlj − x

l
i) × (x

l
k − x

l
i))ϕt(mijk). (6)

Multiple Vector ChannelsWe also design a multiple vector channels version for EMNN,
in which the vector features xi ∈ R3 are replaced by feature matrices Xi ∈ R3×c, where c
is the number of vector channels:

mijk = ϕs(hli, h
l
j + h

l
k, ∣∣(X

l
j −X

l
i) ⊗ (X

l
k −X

l
i)∣∣r). (7)

Similarly, (6) becomes

X l+1
i =X l

i + ∑
j∈ϵ(i)

(X l
i −X

l
j)ϕx(mij) + ∑

j,k∈τ(i)
((X l

j −X
l
i) ⊗ (X

l
k −X

l
i))ϕt(mijk),

(8)

where, ϕx and ϕt produce invariant c × c channel mixing matrices as their output.

Figure 2: EMNN Layer.

Hierarchical Structure To facilitate long-range communications between nodes, after
extracting information using MC-EMNN layers, we employ a hierarchical structure that
pools and unpools feature at different resolutions. The pooling block is defined as:

hl+1i = max
j∈N(il+1)

(ϕP (hlj)) where il+1 ∈ FPS(il) (9)

Here the neighbourhood of each vertex N(i) is gathered using a ball of radius r around
that vertex. The formula for the Unpooling is :

hl−1i = ϕU([
∑j∈KNN(il−1,il)

1
∥xij∥2

hj

∑j∈KNN(il−1,il)
1

∥xij∥2
, hl−1i ]). (10)

Software

https://github.com/HySonLab/EquiMesh

Experiments

Model Initial Features Train Test Gauge Rot-Tr-Ref-Scale Perm

GEM-CNN

XYZ 99.42(0.15) 97.92(0.30) 96.90(0.25) 2.14(1.49) 97.92(0.30)
GET 99.42(0.15) 98.03(0.17) 97.15(0.39) 1.47(1.60) 98.03(0.17)

RELTAN [0.7] 99.69(0.05) 98.62(0.06) 98.04(0.12) 98.62(0.06) 98.62(0.06)
RELTAN [0.5, 0.7] 99.70(0.09) 98.64(0.22) 97.99(0.18) 98.64(0.22) 98.64(0.22)

EMAN

XYZ 99.62(0.09) 98.46(0.15) 97.26(0.34) 0.02(0.00) 98.46(0.15)
GET 99.60(0.08) 98.43(0.17) 97.32(0.46) 0.02(0.00) 98.43(0.17)

RELTAN [0.7] 99.27(1.01) 98.13(1.19) 97.44(1.26) 98.13(1.19) 98.13(1.19)
RELTAN[0.5, 0.7] 99.68(0.00) 98.66(0.07) 98.41(0.25) 98.66(0.07) 98.66(0.07)

EMNN (ours) + MC + Hier XYZ + Normal 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00)

Table 1: Results on FAUST dataset (Segmentation).

Model Initial Features Train Test Gauge Rot-Tr-Ref-Scale

GEM-CNN

XYZ 97.78(2.41) 82.35(5.88) 82.35(5.88) 12.94(2.63)
GET 90.79(2.84) 82.35(9.30) 82.35(9.30) 17.65(7.20)

RELTAN[0.7] 93.97(4.26) 91.76(6.71) 91.76(6.71) 91.76(6.71)
RELTAN[0.5, 0.7] 90.16(8.43) 89.41(14.65) 89.41(14.65) 89.41(14.65)

EMAN

XYZ 47.30(4.55) 42.35(20.55) 44.71(18.88) 12.94(2.63)
GET 44.13(7.39) 42.35(11.31) 41.18(9.30) 10.59(2.63)

RELTAN[0.7] 92.70(4.14) 94.12(4.16) 94.12(4.16) 94.12(4.16)
RELTAN[0.5, 0.7] 97.46(4.14) 98.82(2.63) 98.82(2.63) 98.82(2.63)

EMNN + MC + Hier XYZ + Normal 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00)

Table 2: Results on TOSCA dataset (Classification).

Method Runtime Memory Split-16 Split-10

GWCNN — — 96.6% 90.3% ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Invariant

MeshCNN 50s 1.2GB 98.6% 91.0%

PD-MeshNet — — 99.7% 99.1%

MeshWalker — — 98.6% 97.1%

HodgeNet — — 99.2% 94.7%

SubdivNet 25s 0.9GB 99.9% 99.5% ⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Non-

invariant

DiffusionNet 16s 1.0GB — 99.5%

Laplacian2Mesh 30s 2.8GB 100% 100%

Mesh-MLP — — 100% 99.7%

EMNN + MC + Hier 26s 1.2GB 100% 100%%

Table 3: Results on SHREC dataset (Classification).

Method Input Runtime Memory Accuracy

PointNet point cloud 12s 1.2GB 74.7% }Point
cloudPointNet++ point cloud 10s 0.9GB 82.3%

MeshCNN mesh 137s 1.4GB 85.4% ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
InvariantPD-MeshNet mesh — — 85.6%

HodgeNet mesh — — 85.0%

SubdivNet mesh 100s 1.3GB 91.7% ⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Non-

invariant

DiffusionNet mesh 16s 2.0GB 90.3%

Laplacian2Mesh mesh 70s 4.8GB 88.6%

Mesh-MLP mesh — — 88.8%

EMNN+MC+Hier (ours) mesh 26s 1.0GB 88.7%

Table 4: Results on Human Body dataset (Segmetation).


