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Abstract

Although recent works have addressed the need for geometric deep learning on 3D meshes,
we observe that the complexities in many of these architectures do not translate to practical
performance, and simple deep models for geometric graphs are competitive in practice. Mo-
tivated by this observation, we minimally extend the update equations of E(n)-Equivariant
Graph Neural Networks (EGNNs) [1] to incorporate mesh face information, and further
improve it to account for long-range interactions through hierarchy. The resulting archi-
tecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated
equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing.

* Co-first authors

Method

Equivariant Graph Neural Networks Considering a triangle face (¢, 7, k), we define a
surface-aware message from this face to node ¢ as:

i = %(hg,hg- Bt - 2t (o - x§>||), )

where ¢g is an MLP. The invariant feature for node 7 is created by aggregating all such
messages from neighbouring faces 7(i) = {(J,k)|(¢,7,k) € F}, and neighbouring edges

e(1) = {jl(4,7) € £}:
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Experiments

Software

Software

Model Initial Features Train Test Gauge Rot-Tr-Ref-Scale Perm
141 ] XY7Z 09.42(0.15)  97.92(0.30)  96.90(0.25)  2.14(1.49)  97.92(0.30)
Background hz'+ =op |y Z myj, Z mik | - (5) CEMLCONN GET 09.42(0.15)  98.03(0.17)  97.15(0.39) 1.47(1.60)  98.03(0.17)
jee(i) (j,k)er(7) ) RELTAN [0.7]  99.69(0.05)  98.62(0.06)  98.04(0.12) 98.62(0.06) 98.62(0.06)
RELTAN [0.5,0.7] 99.70(0.09)  98.64(0.22)  97.99(0.18)  98.64(0.22)  98.64(0.22)
Here, the edge message m;; is the same as EGNN in Eq. (4). The equivariant feature Y7 00.62(0.00)  98.46(0.15)  97.26(0.31)  0.02(0.00)  98.46(0.15)

Geometric Feature on Meshes When processing a mesh, our method accounts for its i o v , , DU RN PN DU DI
| . PLOTESSIIG & D . zi*1 is calculated similarly to EGNN update (5), with the difference that the normal to EMAN GET 99.60(0.08)  98.43(0.17)  97.32(046)  0.02(0.00) ~ 98.43(0.17)
points, edges and faces. Each point p € P is associated with its 3D coordinate vector v, , , o , , , RELTAN [0.7]  99.27(1.01)  98.13(1.19)  97.44(1.26)  98.13(1.19)  98.13(1.19)
neighbouring faces is used as an equivariant vector in the update. This vector is scaled by RELTAN[0.5,0.7]  99.68(0.00)  98.66(0.07)  98.41(0.25)  98.66(0.07)  98.66(0.07)

Ty € R3. Meanwhile, a face f € F can have scalar and vector attributes corresponding to

the area and normal vector, denoted by a s and n r respectively. Considering a triangle face

f = (p1,p2,p3), the normal vector and the area are given by nr = (xp, —p,) x (Tps — p; )
74|

the invariant factor based on m;

i =ale Y @h-ahoe(m) Y (@@ -2l < (@ - ah)) ou(mip). (6)

EMNN (ours) + MC + Hier

XYZ + Normal

100.00(0.00) 100.00(0.00) 100.00(0.00)

100.00(0.00)

100.00(0.00)

Table 1: Results on FAUST dataset (Segmentation).

and ay = —5— respectively. By convention, we can generally choose the normal vector to jee(t) jiker (i)

poin? ou?wa,rds. | | | Multiple Vector Channels We also design a multiple vector channels version for EMNN, Model Initial Features Train Test Gauge Rot-Tr-Ref-Scale

Equlvax.'lant Graph Neural Networks A geometric graph is defined as § - (V. €) .Wlth in which the vector features z; € R3 are replaced by feature matrices X; € R3¢, where ¢ Y7 07.78(2.41)  82.35(5.88)  82.35(5.88)  12.94(2.63)

two main components: vertices v; € V and edges e;; € £. Fach vertex v; is associated is the number of vector channels: VLN CET 00.79(2.84)  82.35(9.30)  82.35(9.30)  17.65(7.20)

with scalar invariant features h; € R? and n-dimensional equivariant coordinates z; € R™. ) RELTAN[0.7]  93.97(4.26)  91.76(6.71)  91.76(6.71) 91.76(6.71)

To make the messages invariant to E(n) transformations, the formula for EGNN’s layer is Mg = Qbs(hg;, hé, +ht ||(le _ le) 2 (Xllc _ Xf)”r) (7) RELTAN[0.5, 0.7]  90.16(8.43)  89.41(14.65) 89.41(14.65)  89.41(14.65)

proposed as: XY7Z. AT.30(4.55)  42.35(20.55)  44.71(18.88)  12.94(2.63)

o Lol ol Iy . Similarly, (6) becomes CGET 44.13(7.39)  42.35(11.31)  41.18(9.30) 10.59(2.63)
mij = de(hy, hj» |; - j”? €j), (1) l l l l l l l l EMAN RELTAN[0.7]  92.70(4.14)  94.12(4.16)  94.12(4.16)  94.12(4.16)
+1 _ - .
where the superscript [ denotes the layer number. Then, the scalar and vector features at A =X Z (X - Xj)gbx(m?/]) o Z | ((Xj - X)) ® (Xk B Xz)) ¢t(mljk)v RELTANI0.5, 0.7]  97.46(4.14) ~ 98.82(2.63)  98.82(2.63) 08.82(2.63)
the 1ayer l + ]_ are updated by the foﬂ()wing equations: ]EE(Z) ],]CGT(Z) EMNN + MC + Hier XYZ + Normal 10000(000) 10000(000) 10000(000) 10000(000)

(8)

pl+l _ o ( N Z m;;) (2) Table 2: Results on TOSCA dataset (Classification).
¢ T (i )ee & where, ¢, and ¢ produce invariant ¢ x ¢ channel mizing matrices as their output.
I+1 _ 1 | [ 1 Method Runtime Memory Split-16 Split-10
x@'—i_ = 'CU/[/ + Z (:EZ o xj)¢x(m2])7 (3> Invariant Features Equivariant Features y p p
Jee(i) d p x . GWCNN — — 96.6%  90.3%
Edge Edge
Here, ¢, and ¢ are multi-layer perceptrons (MLPs) and e€(2) = {j | (¢,7) € £} denotes the - v N { ~ . MeshCNN oUs L2GB  98.6%  9L.0%
set of neighbours of node 7. R > | | PD-MeshNet — — 99.77%  99.1%  {Invariant
MR T b TR MeshWalker — 9% 97A%
e il | & L )L ) X, HodgeNet — — 99.2%  94.7%
| | |
Input MC-EMNN | Pooling Unpooling : | | . s l ~N l \(Xz —X;)® (X; — Xp) SUbleNet 258 OgGB 999% 995%
x3 Layers | x3 Layers x3 Layers | —>» MLP —» Human | hi //O]'""> 1 ---------------- o Xk DiﬁUSiOHNGt 16s 1OGB — 995% Non-
/ \ | | | Q‘ ------------- > Aggregate Face Messages Update Coordinate by Face Messages (::::::::: “ - 4 . } .
| : | | (X — X;) ® (X; — X2)|l| /"/ """"" > ik = (kL B+ BL (XL~ XY @ (XL~ XD [ 2] X8 = Sreryl (X! — XD ® (X! — XD)glmize) Xlk 4 Lapla(nanQMesh 30s 2.8GB 100% 100% nvariant
: : IL_ ———————————————— Jl G | L L ! Mesh-MLP — — 100%  99.7%
o | | | | EMNN + MC + Hier 26 12GB  100% 100%%
| | | Triangle Lt xH Triangle
|
——>» MLP —> | : - :
: : | | Figure 2: EMNN Layer. Table 3: Results on SHREC dataset (Classification).
| I I .
————————————————— - Seomontation - Hierarchical Structure To facilitate long-range communications between nodes, after Method Input  Runtime Memory Accuracy
extracting information using MC-EMNN layers, we employ a hierarchical structure that PointNet point cloud  12s 12GB  74.7% }Point
Figure 1. EMNN Architecture. pools and unpools feature at different resolutions. The pooling block is defined as: PointNet++ point cloud  10s 0.9GB  82.3% Jcloud
hé*l = max (¢p(ht)) where *!eFPS(i) (9) MeshCNN mesh 137s  14GB  85.4% |
jeN (il+1) J PD-MeshNet mesh — — 85.6%  ‘Invariant
References , o , , HodgeNet mesh — — 85.0%
Here the neighbourhood of each vertex N (i) is gathered using a ball of radius r around :
, o that vertex. The formula for the Unpooling is : SubdivNet mesh 100s 1.3GB  9L.7%
[1] Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E(n) equivariant graph P 5 DiffusionNet mesh 165 20GB  90.3% |Non-
neural networks. In M. Meila and T. Zhang, editors, Proceedings of the 38th International >, FEKNN(il-L,il) mh]’ Laplacian2Mesh mesh 70s 18CB  88.6% [imvariant
Conference on Machine Learn- ing, volume 139 of Proceedings of Machine Learning hé_l = ¢U([ > 2]1 ,hg_l]). (10) Mesh-MLP mesh — — 88.8%
Rescarch, pages 9323-9332. PMLR. JERNNGTE) 2 EMNN+MC+Hier (ours)  mesh 265 1.0GB  88.7%

Table 4: Results on Human Body dataset (Segmetation).



