
DE-HNN: An effective neural model for Circuit Netlist representation

Zhishang Luo1, Truong Son Hy2, Puoya Tabaghi1, Donghyeon Koh4, Michael Defferrard4,
Elahe Rezaei3, Ryan Carey3, Rhett Davis5, Rajeev Jain3, Yusu Wang1

University of California San Diego 1 Indiana State University 2

Qualcomm Technologies, Inc. 3 Qualcomm Wireless GmbH 4 North Carolina State University 5

DE-HNN: An effective neural model for Circuit Netlist representation

Zhishang Luo1, Truong Son Hy2, Puoya Tabaghi1, Donghyeon Koh4, Michael Defferrard4,
Elahe Rezaei3, Ryan Carey3, Rhett Davis5, Rajeev Jain3, Yusu Wang1

University of California San Diego 1 Indiana State University 2

Qualcomm Technologies, Inc. 3 Qualcomm Wireless GmbH 4 North Carolina State University 5

Motivation & Main Results

Chip design’s growing complexity leads to the need of a machine learning model that
can provide fast feedback. Such model’s accuracy is affected by the representation of the
design data, which is usually a ”netlist” that describes the cells and nets and how they are
connected in a design. Our works:

• We represent a netlist as a directed hypergraph to seperate the roles of driver and
sinks cells.

• We propose a learning model DE-HNN for directed hypergraphs which can univer-
sally approximate any node or hyperedge based function that satisfy equivariant and
invariant properties.

• We use a hierarchy of virtual nodes (VNs) to aid the learning of large-scale long-
range interactions and a topological summary called persistence diagram (PD) to
encode the ”shape” of graph motif around each node.

• We compare our DE-HNN with several SOTA machine learning models for (hy-
per)graphs and netlists, and our model outperforms them in predicting properties of
netlists.

DE-HNN: A Neural Network for Directed Hypergraphs

• A netlist H consists of a collection of cells (logic gates) C = {c1, . . . , cn}, and a set
of nets N = {σ1, . . . , σm}, see Figure (a) below.

• A directed hypergraph
Ð→
H = (V,Ð→Σ ) has directed hyperedge σ ∈ Ð→Σ consists of an

ordered pair σ = (vσ, Sσ) with vσ ∈ V and Sσ ⊆ V , see Figure (b) below.

• A netlist H thus can be represented as a directed hypergraph where we have: cell
⇔ node, and net ⇔ directed hyperedge.

c1

c2

c3

c4

c5

c6

c7

v1

v2

v3

v4

v7

σ1

σ3

σ2

σ4

σ5

v5

v6

(a) (b)
(a) A netlist H with 7 cells C = {c1, . . . , c7} and 5 nets. For example, the output of gate c2 flows into cells c3, c5, and c7, giving

rise to the net σ = (c2,{c3, c5, c7}). That is, the driver cell of σ is vσ = c2, while its sink-set being Sσ = {c3, c5, c7}. (b) The
corresponding directed hypergraph

Ð→
H = (V,Ð→Σ ) with 7 nodes and 5 hyperedges

Ð→
Σ = {σ1, . . . , σ5}. Each node vi corresponds to

cell ci, and each hyperedge is marked as a shaded region.

The input to our base-DE-HNN is the directed hypergraph
Ð→
H = (V,Ð→Σ ) that represents

the netlist H. For the ℓ-th layer, base-DE-HNN will compute cell/node feature mℓ(v) and
net/directed hyperedge feature M ℓ(σ) as:

• Node Update:
mℓ(v) = Aggℓσ→v({{M ℓ−1(σ′)}}σ′∈I(v)) (1)

Implementation:
mℓ(v) = ∑

σ′∈I(v)
MLPℓ1(M ℓ−1(σ′)), (2)

• Net Update:
M ℓ(σ) = Aggℓv→σ(mℓ(vσ),{{mℓ(v′)}}v′∈Sσ) (3)

Implementation:

M ℓ(σ) =MLPℓ3[mℓ(vσ)⊕ ( ∑
v′∈Sσ

MLPℓ2(mℓ(v′)))] (4)

Augmenting Base DE-HNN to Full DE-HNN

We further augment our base-DE-HNN with following strategies to full-DE-HNN to cap-
ture long-range interactions and the multi-scale graph topology.

• Hierarchy of virtual nodes. A virtual node (VN) is an additional node we add that
is connected to all input nodes. Adding a single VN effectively reduces the graph
diameter to 2. In the case of large (hyper)graphs, we partition the node set and
assign one local VN to each subset, and we add a global VN that connects all local
VNs, see Figure (c).

• Positional and structural encodings. Besides Laplacian positional encoding, to cap-
ture the ”shape” of the neighborhood, similar to to (Yan et al., 2021; Zhao et al.,
2020), we use extended persistence diagram (PD) induced by shortest path distance
function within the 6-hop directed neighborhood of each node. In Figure (d) it’s a
smaller example of 2-hop directed neighborhood.
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DE-HNN for Netlist Properties Predictions

We apply our base-DE-HNN and full-DE-HNN to tasks including Net-based wirelength
regression, Net-based demand regression, and Cell-based congestion classification, similar
to [1] and [2]. Tables below shows part of the single-design and cross-design empirical
results, last row ”Improvement” refers to the improvement of our full DE-HNN model over
the best baseline for each metric.

Single Design
net-based wirelength regression net-based demand regression cell-based congestion classification

Model RMSE ↓ MAE ↓ Pearson ↑ RMSE ↓ MAE ↓ Pearson ↑ Precision ↑ Recall ↑ Fscore↑
GCN 1.762 1.276 0.750 9.321 6.163 0.570 0.761 0.857 0.802
GATv2 1.812 1.330 0.687 9.342 6.118 0.561 0.810 0.864 0.835
AllSet 1.718 1.264 0.760 9.072 5.745 0.632 0.782 0.837 0.804

HMPNN 1.841 1.368 0.710 9.342 6.118 0.561 0.774 0.826 0.792
HNHN 1.852 1.368 0.717 9.119 5.885 0.594 0.792 0.869 0.826

NetlistGNN 1.773 1.320 0.740 9.063 5.839 0.623 0.812 0.860 0.831

base DE-HNN 1.751 1.269 0.748 8.997 5.764 0.630 0.824 0.860 0.840
full DE-HNN 1.689 1.245 0.770 8.381 5.334 0.683 0.833 0.876 0.853

Improvement 1.7% 1.6% 1.3% 7.5% 7.2% 8.1% 2.6% 0.8% 2.2%

Cross Design
net-based wirelength regression net-based demand regression cell-based congestion classification

Model RMSE ↓ MAE ↓ Pearson ↑ RMSE ↓ MAE ↓ Pearson ↑ Precision ↑ Recall ↑ Fscore↑
GCN 1.691 1.276 0.746 6.571 5.024 0.365 0.633 0.997 0.773
GATv2 1.717 1.281 0.737 6.623 5.137 0.363 0.630 0.999 0.765

NetlistGNN 1.762 1.324 0.718 8.328 6.839 0.367 0.647 0.953 0.771
Allset 1.837 1.348 0.695 6.120 4.820 0.345 0.645 0.964 0.773

HMPNN 1.785 1.335 0.710 6.979 5.356 0.306 0.633 0.999 0.773
HNHN 1.754 1.333 0.701 6.390 4.870 0.358 0.648 0.939 0.767

base DE-HNN 1.731 1.291 0.730 6.778 5.085 0.337 0.653 0.990 0.774
full DE-HNN 1.677 1.242 0.754 6.037 4.670 0.372 0.660 0.986 0.780

Improvement 1.9% 2.6% 1.8% 1.4% 4.1% 1.4% 0.7% - 0.3%

Ablation Study

We carried out an ablation study and compare the performance of the following versions:
(a) base-E-HNN is similar to base-DE-HNNbut without direction. (b) base-DE-HNN is the
base model for directed hypergraph with neither PDs nor VNs. (c) base-DE-HNN+PD is
the base model with only PDs. (d) base-DE-HNN+PD+single VN is the base model with
PD and a single global VN. (e) full-DE-HNN is our full model with PDs and a two-level
hierarchy of VNs. The results for net-based demand regression and cell-based congestion
classification are shown in Figure below.

Ablation study for net-based demand regression (left, RMSE) and cell-based congestion classification (right, F-score).

net-based wirelength regression

Model RMSE ↓ MAE ↓ Pearson ↑
GCN with no PD 1.809 1.326 0.735

GCN+PD 1.762 1.276 0.750

Improvement 1.9% 3.6% 5.2%

GATv2 with no PD 1.920 1.401 0.659
GATv2+PD 1.812 1.330 0.687

Improvement 0.7% 0.6% 1.6%

net-based demand regression

RMSE ↓ MAE ↓ Pearson ↑
9.698 6.453 0.547
9.321 6.163 0.570

3.9% 4.5% 4.2%

9.710 6.392 0.539
9.342 6.118 0.561

3.8% 4.3% 4.1%

cell-based congestion classification

Precision ↑ Recall ↑ F score ↑
0.746 0.837 0.784
0.761 0.857 0.802

2.0% 2.4% 2.3%

0.802 0.856 0.811
0.810 0.864 0.835

1.0% 1.0% 3.0%

Ablation Study: the effect of using persistence diagrams (PDs) to two baselines. For each method, the 3rd row shows the

percentage of improvement after using PD as part of the input features. The results we reported are those baselines+PD.

Software

Our source code and netlists data used are publicly available. Scan barcode below or
https://github.com/tilos-ai-institute/dehnn.
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