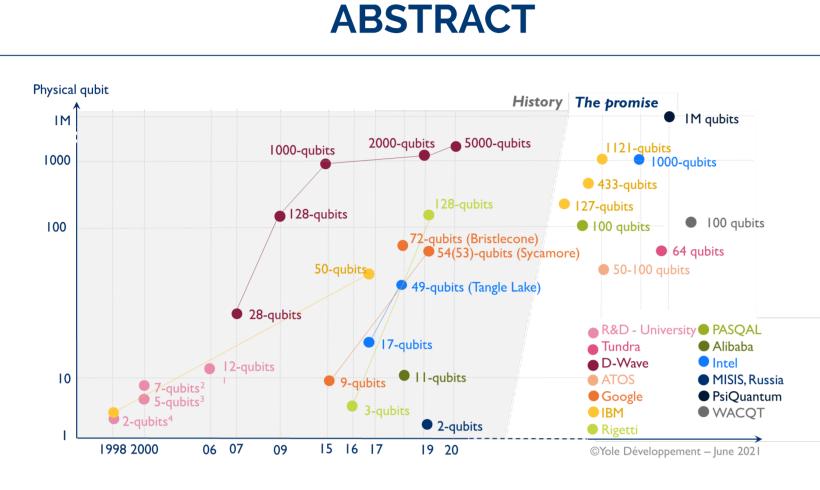
Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression



- A lack of current number of qubits for practical applications. For example: factoring RSA 2,048-bit numbers requires **20,000,000** physical qubits, far exceeding available hardware (maximum **5,000** qubits, promising **1,000,000** qubits).
- We present a GNN-based framework that **generalize well to Ising of different sizes**, automating the discovery of qubit reduction rules via **qubit alignments**.
- Our extensive testing reveals substantial multi-level size reductions across various Ising topologies while preserving solution quality.
- By significantly reducing qubit requirements, our approach expands the scope of tractable problems for current quantum devices.

BACKGROUND

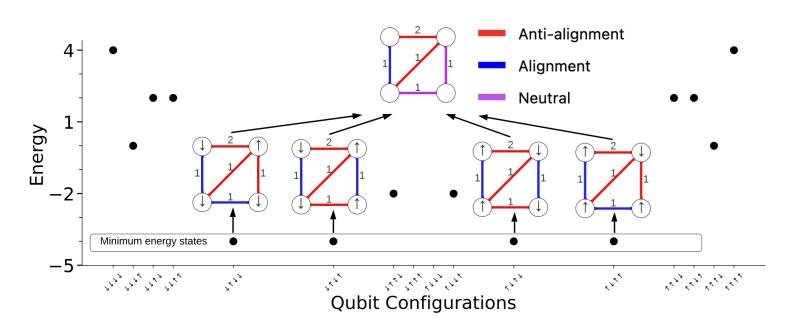
Ising models. An Ising model consists of binary variables (spins) $s_i \in -1, +1$, with energy given by the Hamiltonian:

$$H = -\sum_{i,j} J_{ij} s_i s_j - \sum_i h_i s_i$$

where J_{ij} is the coupling between spins i, j, and h_i is the external field at spin i. Global minimum energy (ground states) can be found by using **Quantum annealing**:

$$H_{\text{system}}(s) = -\frac{A(s)}{2} \Big(\sum_{i}^{n} \sigma_{i}^{x}\Big) + \frac{B(s)}{2} \Big(H_{\text{problem}}\Big)$$

where $s \in [0, 1]$ is the anneal fraction, σ_i^x is the Pauli x-matrix for the i-th qubit, and H_{problem} is the problem Hamiltonian, equivalent to Hamiltonian (1). A(s) and B(s) define the anneal schedule. **Qubits alignment.** We classify each edge (i, j) based on the behavior of connected spins across all ground states: alignment (s_i , s_j have same sign), anti-alignment (s_i , s_j have opposite signs), and neutral $(s_i, s_j \text{ alignment varies}).$



¹University of Texas at Austin

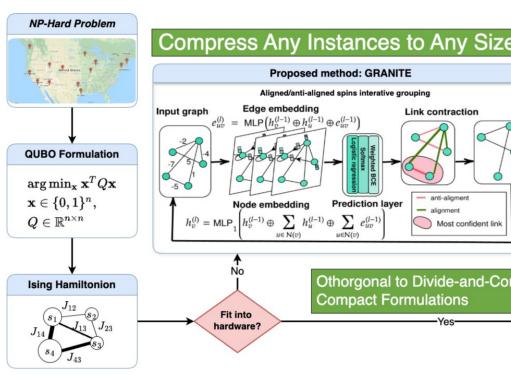
²Department of Computer Science, Virginia Commonwealth University

³University of Alabama at Birmingham

*equal contributions

Methodology

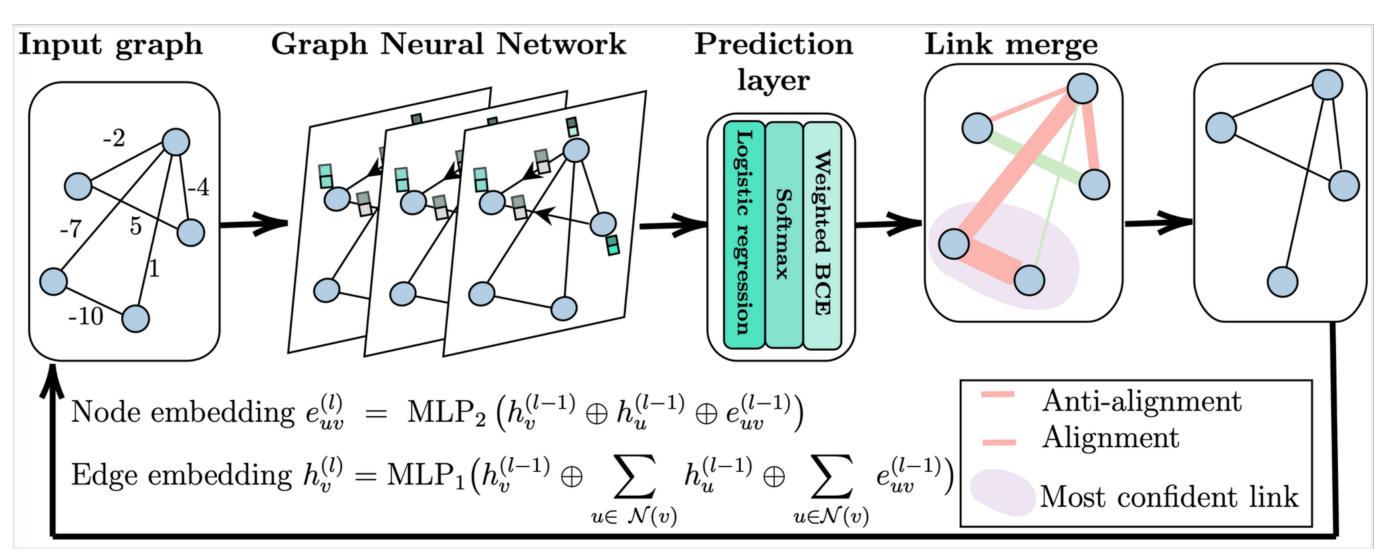
- Input: An Ising Hamiltonian H.
- **Output**: A compressed Ising Hamiltonian H' optimized for quantum hardware constraints.
- **Objective**: GNN architecture that generalizes across different Ising model sizes.



GNN Model. We respresent Ising Model with Hamiltonian graph $G_H = (V, E)$ where V is the set of nodes and $E \subseteq V \times V$ is the set of edges. The initial node and edge features are defined as:

$$\mathbf{H}^{(0)} = \{h_v^{(0)} \in \mathbb{R}^{d_h} \mid v \in \mathbb{R}^{(0)} = \{e_{uv}^{(0)} \in \mathbb{R}^{d_e} \mid (u, v)\}$$

respectively, in which d_h and d_e are the corresponding numbers of input node and edge features.



At layer ℓ , the message passing scheme updates each node representation based on the neighboring nodes' representations at the previous layer $\ell - 1$; meanwhile, each edge representation is updated based on the edge's two corresponding nodes. Formally, we have:

$$\begin{split} h_v^{(\ell)} &= \mathsf{MLP}_1\left(h_v^{(\ell-1)} \oplus \sum_{u \in \mathcal{N}(v)} h_u^{(\ell-1)} \oplus \sum_{u \in \mathcal{N}(v)} e_{v,u}^{(\ell-1)}\right),\\ e_{uv}^{(\ell)} &= \mathsf{MLP}_2\left(h_u^{(\ell-1)} \oplus h_v^{(\ell-1)} \oplus e_{uv}^{(\ell-1)}\right), \end{split}$$

Most confident link predict for if each edge (u, v) is aligned or anti-alignment. Let L denote the number of layers of message passing, a feature vector $z_{uv} = h_u^{(L)} \oplus h_v^{(L)} \oplus e_{uv}^{(L)}$. The logistic regression model predicts the probability on each edge (i.e. edge confidence) as:

$$\hat{y}_{uv} = \sigma(\langle w, z_{uv} \rangle),$$

(1)

(2)

Co Tran ^{1*} Quoc-Bao Tran ^{2*} Hy Truong Son ³ Thang N Dinh²

- $\in V$
- $e) \in E\},$

(3)

We iteratively contract one edge per round to reduce the Ising Hamiltonian. Edges are classified as either alignment or anti-alignment via a weighted binary cross-entropy (BCE) loss, where the weight is the model's *confidence* in the prediction.

Negative Entropy (Confidence):

$$c_i = Softmax\{-$$

 $-H(\hat{y}_i) = \hat{y}_i \log(\hat{y}_i) + (1 - \hat{y}_i) \log(1 - \hat{y}_i),$ } where $\hat{y}_i \in [0, 1]$ is the probability that edge *i* is "alignment."

Weighted BCE Loss:

$$\mathcal{L} = \sum_{i=1}^{N} - \delta_{i}$$

with $y_i \in \{0, 1\}$ denoting alignment or anti-alignment.

Topology	Reduction (%)	n				
Topology		25	50	100	200	400
	0.0% Original Ising	100.00 ± 0.00	100.00 ± 0.00	99.68 ± 0.19	96.77 ± 0.45	NaN
Erdős-Rényi	12.5%	98.21 ± 1.09	98.67 ± 0.44	96.70 ± 0.55	94.87 ± 0.37	89.36 ± 0.37
Eluos-Kellyl	25.0%	96.03 ± 1.44	97.12 ± 0.76	94.26 ± 0.56	93.38 ± 0.54	88.58 ± 0.80
	50.0%	94.58 ± 1.64	94.19 ± 1.42	91.23 ± 1.00	91.56 ± 0.63	88.02 ± 0.63
	75.0%	93.20 ± 1.55	92.26 ± 1.40	89.60 ± 0.97	91.07 ± 0.82	88.17 ± 0.79
	0.0% Original Ising	100.00 ± 0.00	100.00 ± 0.00	99.93 ± 0.07	97.25 ± 0.25	89.11 ± 0.48
Barabási-Albert	12.5%	97.69 ± 1.22	97.54 ± 0.91	97.79 ± 0.65	94.71 ± 0.80	88.53 ± 1.11
	25.0%	97.12 ± 1.38	95.63 ± 1.24	97.09 ± 0.75	92.69 ± 1.08	87.84 ± 1.11
	50.0%	94.88 ± 1.59	93.00 ± 1.45	94.87 ± 1.14	92.66 ± 0.92	88.76 ± 0.60
	75.0%	92.43 ± 1.88	91.89 ± 1.21	93.37 ± 1.28	92.30 ± 0.87	88.72 ± 0.96
Watts-Strogatz	0.0% Original Ising	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	99.14 ± 0.14	96.57 ± 0.26
	12.5%	98.06 ± 1.13	98.85 ± 0.52	99.08 ± 0.40	96.73 ± 0.59	91.96 ± 0.72
	25.0%	95.95 ± 1.30	96.86 ± 0.90	97.40 ± 0.52	96.28 ± 0.56	90.73 ± 1.28
	50.0%	93.39 ± 1.08	96.26 ± 1.07	95.13 ± 0.83	94.69 ± 0.41	90.63 ± 0.94
	75.0%	91.69 ± 1.31	94.69 ± 1.22	92.74 ± 1.26	92.23 ± 0.53	91.03 ± 0.88

Table 1: Solution optimality on D-Wave quantum annealers after and before compressing Ising models with GRANITE.

# Layers	ER	BA	WS
1	76.64 ± 0.86	82.95 ± 0.72	85.73 ± 1.05
2	88.09 ± 0.45	86.47 ± 1.07	91.56 ± 1.03
3	$\textbf{91.07} \pm \textbf{0.82}$	$\textbf{92.30} \pm \textbf{0.87}$	92.23 ± 0.53
4	81.07 ± 1.27	86.47 ± 0.91	85.79 ± 1.39
5	84.48 ± 1.49	90.72 ± 0.85	90.94 ± 0.63

Table 3: Optimality with different number of GNN layers at n = 200 and reduction rate = 75%.

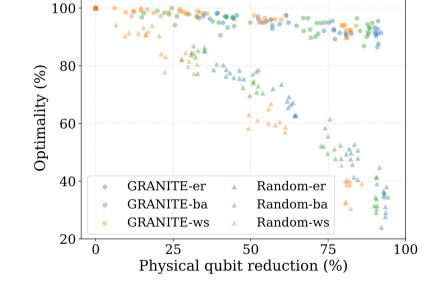
CONCLUSION & FUTURE WORK

- stances.

Co Tran, The University of Texas at Austin, cotran2@utexas.edu

$$c_i \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right],$$

EXPERIMENTS RESULTS



ABLATION STUDY

	BCE	MSE	Hybrid	Softmax
ER	86.90 ± 1.08	75.68 ± 3.85	$\textbf{91.07} \pm \textbf{0.82}$	89.68 ± 1.07
BA	89.05 ± 1.35	92.07 ± 0.69	$\textbf{92.30} \pm \textbf{0.87}$	78.89 ± 2.44
WS	92.58 ± 0.30	$\textbf{94.02} \pm \textbf{0.60}$	92.23 ± 0.53	92.60 ± 0.51

Table 2: Optimality for different loss functions for n=200, edge reduction 75%.

• A framework based on GNNs automates the process of finding reduction rules for Ising in-

• Our framework enables solving larger optimization problems on current quantum devices. • Extend GRANITE to handle real-world optimization problems from various domains. • Adapt compression techniques for different quantum computing technologies and devices.

CONTACT