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Abstract

Lack of efficiency of self-attention in dealing with long inputs has motivated many
efficient transformer variants. We consider hierarchy as an interesting route toward
sparsity. This can be achieved by forming a tree on top of the input tokens and
limiting the span of attention, based on the branching factor, thereby reducing
the complexity of the self-attention layer to O(n log(n)). This paper provides
preliminary results in creating such transformer architecture, called Sequoia1 The
proposed method leverages the hierarchy within a single self-attention layer and
sequentially applies the attention mechanism to the tree in a bottom-up fashion.
Although the proposed architecture makes minimal design choices, we provide
ablation studies to support them. Our preliminary results on point cloud tasks
and sequence classification benchmarks suggest favourable performance compared
to state-of-the-art transformer architectures without resorting to efficient CUDA
implementation. The code for the project is available at https://github.com/
Fsoft-AIC/Sequoia

1 Introduction

Transformers [30] surpassed the existing SOTA on almost all input modalities through the combined
feat of parallel training and dot-product attention. From natural language processing to graph-based
video understanding, transformers have displayed competitive performance on standard benchmarks
over the past few years. However, their quadratic complexity in the sequence length Ω(n2) makes
them intractable for long sequences [28]. Therefore, a considerable body of literature on efficient

1Sequoia. Sequential Attention
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transformers is dedicated to scaling the vanilla transformer beyond the 512 tokens frontier with
multiple approaches to resolving their scaling/performance tradeoff.

Drawing on the intuition that self-attention iteratively refines tokens’ embeddings using all-to-all
communication, some efficient transformers sparsify the attention matrix to prioritize the computation
of the most useful interactions. In this work, we assume a hierarchical underlying generative process
and encode this hierarchy in the transformer architecture. This choice translates to introducing “virtual
nodes” corresponding to internal nodes of the tree. Each node only attends to its children, parents
and siblings in the tree, reducing the computational complexity of the attention layer to quasi-linear
in the size of the input. In the following, after a brief review of the related works, we elaborate on
this hierarchical attention scheme and present preliminary results on point cloud classification and
segmentation, as well as sequence classification.

2 Related work

Most efficient transformers either simplify the computation of the attention matrix or get rid of it
altogether. Reformer [11] is a content-based sparse attention transformer that matches tokens together
into buckets using locality-sensitive hashing before applying local attention. Others employ learnable
sparsity patterns, like Sinkhorn transformers [26] which induce sparsity by sorting the keys and values
matrices such that local heuristics can be applied in the computation of the scaled-dot-product. Most
efficient transformers papers such as [9], [1], [23] and [41] resort to similar sparsity heuristics in order
to get rid of the bulk of the computations in the dot-product attention in a structured way, allowing
for efficient implementation without custom CUDA kernels. They often rely on local information
processing, only selecting a few tokens as “global tokens” which will attend to every token and be
attended to by all tokens. Further away from sparsity-based approaches, Transformer-XL [6] is a
memory-based transformer that adds recurrent connections across segments by reusing the hidden
states of the model while processing tokens of the previous segment. The work closest to ours is BP
Transformer [40] which uses binary partitioning of a sequence in order to integrate information from
long-term context in a fine-to-coarse fashion. Our model relies on sequential local message-passing
updates in a tree, as opposed to BP Transformer which achieves global information sharing by
computing intermediate nodes’ embeddings in parallel directly from their leaf nodes instead of their
direct children. Also, it relies on sequential ordering of the tokens to construct the dynamic hierarchy,
which our model does not.

3 Method

Our proposed attention scheme consists in sequentially applying an attention-based update at various
levels of a k-ary tree constructed on top of the input tokens. The leaves of the tree correspond to
actual tokens of the input, while intermediate nodes are hubs for information propagation at different
resolutions, thus allowing global information sharing2.

The construction of this tree depends on the geometry of the input data itself; for point cloud data,
the tree structure can use the Euclidean distance for deciding the neighbourhoods; for example, one
could use KD-tree, hierarchical clustering, or hierarchical K-nearest neighbours to construct the tree.
For sequential data, the timestamp of tokens can be used to define neighbourhoods, where higher
nodes in the tree represent increasingly larger intervals.

We consider the most relevant neighbours to update a token’s embedding to be its children, siblings and
ancestors. Global information sharing is achieved by sequentially updating the nodes’ embeddings in
a bottom-up fashion. More concretely, Achildren(i) refines node i’s embedding by computing scalar
dot-product attention between its query Qi and its children’ keys Kj .

Achildren(i) = Attention
[
Qi, (Kj , Vj)j ∈ children(i)

]
(1)

A similar process is used to produce an embedding based on ancestors Aancestors(i), and siblings
Asiblings(i). One would then need to combine these embeddings, e.g., using an MLP or even another

2We refer the interested reader to the appendix for a thorough presentation of the mathematical formalism of
efficient transformer models and a detailed explanation of our model’s attention mechanism.
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Figure 1: Sequoia, our proposed sequential hierarchical attention scheme.

attention mechanism to update the embedding for node i. For simplicity, in our experiments we use
average pooling.

To further simplify the model, one could limit the attention span to only include the children and
parents of each node. Sibling and ancestor information could, in principle, propagate through the
parent. However, in practice, we found the effect of siblings’ attention to be significant in performance.
Note that this choice does not affect the asymptotic complexity of the proposed layer; the complexity
in both run-time and memory remains quasi-linear in the input size O(n log(n)). In practice, the
added cost remains negligible given the tree only has a few layers, and the number of nodes drops
significantly in each layer.

4 Experimental results

4.1 Point clouds

To demonstrate the efficiency of Sequoia on point clouds, we conduct experiments on two tasks:

• Shape classification: ModelNet40 [36] dataset is a classification dataset that contains
12,311 3D models categorised into 40 classes. In this experiment, we use 9,843 samples for
training and 2,468 for validation and testing. To measure the performance of each model,
we report the testing overall accuracy and average class accuracy in Table 1.

• Part segmentation: ShapeNetPart [17] dataset is a part segmentation dataset, which contains
16,881 synthetic point clouds from 16 classes. Specifically, 14,006 samples are used for
training and 2,874 for validation and testing. In this data, each object has 2 to 6 parts,
resulting in 50 parts in total. To evaluate the model, we use class average IoU and instance
average IoU, which is reported in Table 1.

In each task, we compare the performance of our model with the normal soft-max attention and other
models specifically designed for point clouds. Furthermore, we also run an ablation study to find the
most optimal configuration for our model and compare its complexity with other approaches. The
results of the ablation study are reported in C.2.1 and settings of all experiments are described in
C.3.1.

Although we do not produce the SOTA results on the two tasks for point cloud, Sequoia is a
lightweight attention-based model with competitive results. Furthermore, with the new algorithm for
tree construction, we can avoid O(n2) complexity when calculating distance for sampling and finding
nearest neighbours in other point-based methods. We significantly outperform softmax attention
while requiring much lower complexity in both computation and memory for training and inference.
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Method Accuracy mAcc
VoxNet [16] 85.9 83.0
MVCNN [25] 90.1 –
PointNet [19] 89.2 86.0
DGCNN [34] 92.9 90.2
GridGCN [38] 93.1 91.3
Set Transformer [13] 90.4 –
PointNet++ [20] 91.9 88.4
PointConv [35] 92.5 –
KPConv [29] 92.9 –
PointTransformer [42] 93.7 90.6

Softmax attention 89.5 87.4
Sequoia 92.0 88.4

Method Inst IoU Class IoU
PointNet [19] 71.9 43.7
DGCNN [34] 85.1 82.3
PointNet++ [20] 85.1 81.9
PointConv [35] 85.7 82.6
PointCNN [14] 86.1 84.6
PointTransformer [42] 86.6 83.7

Softmax attention 78.8 74.9
Sequoia 82.7 79.5

Table 1: Shape Classification results on ModelNet40 (left table)
and Part Segmentation results on ShapeNetPart (right table)

.

4.2 Sequence classification

Long Range Arena [27] is a sequence classification benchmark specifically designed for assessing
transformers’ capabilities to efficiently process and summarize long sequences 3. In order to accurately
measure the quality of the inductive bias of sequential hierarchical attention, we train our model on
an array of complementary classification tasks from LRA : IMDB (text), Cifar10 (image), Listops
(mathematical sequence parsing), Retrieval (byte-level document matching) and Pathfinder (image).
In the experimental results below 2, we report for each model the classification accuracy over a total
of 50,000 training steps on 4 RTX8000 GPUs :

Method IMDB Cifar10 Listops Retrieval Patfhinder-32
Nystrom-64 62.11 56.89 36.64 81.55 75.62
Linformer-64 56.03 43.57 38.66 76.22 90.22
Performer-64 62.46 38.59 18.4 78.62 69.90
Linear 50.98 22.28 17.79 49.41 50.36

Softmax attention 60.87 48.45 39.62 OOM 88.61
None attention 60.50 37.03 37.1 80.42 50.36
Sequoia (ours) 62.72 49.88 37.70 67.04 58.44

Table 2: Sequence Classification results on Long Range Arena benchmark for efficient transformers.

Sequoia proves to be a good general-purpose model for sequence classification on a wide range of
input sequence modalities. Sequoia outperforms the Vanilla baseline (Softmax attention) on IMDB
and Listops, which demonstrates that sparsifying the attention matrix using sequential attention can
not only lower the computational complexity of the model, but also provide a beneficial inductive
bias. Although our model is theoretically efficient with O(n log(n)) complexity, it only becomes
more runtime and memory efficient than vanilla attention at 9, 000 tokens. Other efficient transformer
baselines typically outperform vanilla attention as soon as 512 tokens. This currently restrict
Sequoia’s usage for very long-range sequence modeling and classification applications (see figure 7
in the appendix).

Our primary purpose in this paper was to explore how to better learn long-term dependen-
cies, using Sequoia’s sparse hierarchical attention as a prototype. Our current implementation
involves tensor re-indexing of the keys and values. In order to go beyond a simple proof-of-concept
of Sequoia’s inductive bias of hierarchical attention, we intend to leverage the sparsity of the

3We refer the interested reader to [27] for an exhaustive description of each dataset of the LRA benchmark.
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attention graph with specialized tensor operations in future work in order to make Sequoia more
computationally efficient.

5 Conclusion

Sequoia is part of a larger research effort to better understand how attention-based models could be
efficiently sparsified by means of hierarchy. In this work-in-progress paper, we have introduced two
essential ingredients towards such unification : (i) sequential updates of tokens’ embeddings on a (ii)
hierarchical tree induced by the input tokens. Sequoia demonstrates solid performance on a range
of tasks, from point cloud classification and segmentation to sequence classification across multiple
input modalities. Besides, it is general-purpose and requires little adaptation to a particular input (as
opposed to most point cloud understanding models), as long as a hierarchical k-ary tree can be built
over the set of input tokens.

Unlike most efficient transformer models, Sequoia is readily applicable to the causal (autoregressive)
generation mode. We plan to investigate its application to language generation in future work. Among
other directions that we would like to explore in the future are generalizing the tree structure to a lattice,
thereby increasing the number of pathways between input tokens, and; adaptive neighbourhood sizes
that dynamically learn to identify the underlying hierarchy during the training. In future work, we
intend to decrease the computational cost of our model by using hardware-optimized implementations
of sparse scalar dot product.
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A Background

A.1 Transformers

Transformer block Let L be the number of layers, H the number of attention heads, N the
maximum sequence length and d the token feature dimension at the output of the transformer block 4.
A Transformer is defined by the iterative composition of transformer blocks sharing the following
form :

T (x) = F(A(x) + x) (2)

Scaled dot-product self-attention Scaled-dot-product attention updates embeddings through a
weighted pooling of tokenwise features pooled across the entire input sequence.
Let us first compute (query, key, value) pairs for each token :

Q,K, V = XWQ, XWK , XWV (3)

with WQ ∈ Rd×dk ,WK ∈ Rd×dk and WV ∈ Rd×dv .

Token i’s embedding is updated using the following formula:

X ′
i = AWQ,WK ,WV

(X, i) =
∑

j∈[1,N ]

S(Qi,Kj)Vj (4)

In scaled-dot-product attention, the interaction scores S(·, ·) are computed as follows:

S(Qi,Kj) =
exp(QiK

T
j )

|Si|
× 1√

dk
(5)

with |Si| the normalization factor associated with token i:

|Si| =
∑

j∈[1,N ]

exp(QiK
T
j ) (6)

Multiheaded attention Multiheaded self-attention parallelizes the computation of attention into
various subspaces of the latent space. We first split each input into H different subspaces of latent
dimension dhk = dk

H for queries and keys and dhv = dv

H :

Amultiheaded(X) = [X ′1 :: · · · :: X ′h :: · · · :: X ′H ]WO (7)

where X ′h is the output of the self-attention mechanism for head h ∈ [1, H]:

Asinglehead(X) = AWh
Q,Wh

K ,Wh
V
(X) (8)

with Wh
Q ∈ Rd×dh

k ,Wh
K ∈ Rd×dh

k , Wh
V ∈ Rd×dh

v and WO ∈ Rdv×d.

A.2 Transformers for point clouds

Regarding point clouds, transformer only drew considerable attention from researchers in the recent
years. For example, Point Cloud Transformer [8] proposes a method that directly applies full attention
between all points in a point cloud which results in reasonable performance but has limitation in
terms of scalability. Thereafter Point Transformer [42] tackles this issue by imposing hierarchical
structure from PointNet++[20] which calculates attention only for a group of points in a local region.
Fast Point Transformer[18] further optimizes the function to boost the speed of self-attention based
model to 129 times faster than Point Transformer [42] in semantic segmentation.

4For the sake of simplicity, we omit the layer and head indices l and h, the extension to the multi-layer /
multi-head case being straightforward.
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B Our model

B.1 Proposed model

In order to learn a principled hierarchy of distributed representations, we construct a recursive k-ary
tree over the input sequence of tokens, which correspond to its leaf nodes. The other intermediate
levels of the tree up until the root node will henceforth be denoted virtual nodes. Let us now introduce
some preliminary notation :

• X0 ∈ Rn×d is the embedding matrix of the tokens in the input sequence.

• τ = τ(X) is the recursive k-ary tree built using branching factor k 5.

• nτ =
∑Λ−1

λ=0 n
τ
λ is the total number of nodes in the tree (including both leaf nodes and

virtual nodes).

• Λτ is the total number of levels in the tree 6.

• Xτ
0 ∈ Rnτ×d is the embedding matrix of the nodes in the augmented input sequence.

• Xτ
λ corresponds to the embeddings matrix of the nodes of level λ.

• Iλ, |Iλ| = nτ
λ is the list of the indices of the nodes in a given layer λ of τ .

Sequoia’s hierarchical message-passing attention scheme consists in taking into account three
different neighbourhoods based on the tree structure before updating a node i ∈ Iλ’s embedding :

1. Children Cτ
λ,i (all nodes j ∈ Iλ−1 | Parent[j] = i).

2. Siblings Sτ
λ,i (all nodes j ∈ Iλ | Parent[j] = Parent[i]).

3. Ancestors Aτ
λ,i : (all nodes j ∈ Iλ ∪ · · · ∪ ∈ IΛ−1 | Parent ◦ · · · ◦ Parent︸ ︷︷ ︸

Λ−λ times

[i] = j).

Our proposed attention scheme consists in applying :

Aent(·) = ϕ
[
Achildren(·);Asiblings(·);Aancestors(·)

]
(9)

with ϕ an appropriate fusion layer mixing the updated embeddings of each node according to the
three different attention types (children, siblings and ancestors) on the nodewise axis.

For each node i ∈ Iλ, we compute its interaction scores with its children, siblings and
ancestors, and apply softmax normalization on the resulting attention weights (scaled dot-products)
across each of the three neighbourhoods. We then pool the values from its neighbours weighted by
the corresponding attention scores. More formally, let Qi be the query embedding associated with
node i, and (Kj , Vj)j∈V be the key / value embeddings associated with nodes j in the neighbourhood
V .

Achildren(Xτ
λ , i) = Attention W c

Q,W c
K ,W c

V

[
Qi, (Kj , Vj)j ∈ children(i | τ,λ)

]
(10)

Asiblings(Xτ
λ , i) = Attention W s

Q,W s
K ,W s

V

[
Qi, (Kj , Vj)j ∈ siblings(i | τ,λ)

]
(11)

Aancestors(Xτ
λ , i) = Attention Wa

Q,Wa
K ,Wa

V

[
Qi, (Kj , Vj)j ∈ ancestors(i | τ,λ)

]
(12)

We finally fuse the updated embeddings proposed for node i by each of the three attention types using
simple average pooling.

ϕaverage[C
τ
λ,i, S

τ
λ,i, A

τ
λ,i] =

Cτ
λ,i + Sτ

λ,i +Aτ
λ,i

3
(13)

5Extension to the more general setting where the branching factor is not the same across all levels, but is
instead specified separately for each level in the tree (k0, · · · , kΛ−1) is straightforward.

6To make notations more readable, we now drop the ·τ superscript.
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Sequential updates Instead of updating all nodes (both true and virtual) simultaneously (in paral-
lel), we first update the values of the results in little added computational complexity while increasing
the expresivity of our model. Indeed, since all sequential updates are applied in a single transformer
layer, the root node has global receptive field at the end of the first layer. Technically, if we use
bottom-up sequential updates, we need two layers in order to achieve global information sharing
between any pair of points. Multiple update schemes (priority orderings of the message passing
schemes) can be considered, such as bottom-up -> top-down, which we leave for future work.

∀λ ∈ [0,Λ− 1],∀i ∈ Iλ, X
τ
λ,i := AHMP(Xτ , λ, i) (14)

Please note that this scheme dramatically reduces the computational complexity of the transformer
model, especially in the deeper levels of the tree.

C Experimental details

C.1 Computational complexity analysis

The total number of nodes (both true and virtual) in the tree is :

|I| =
Λ−1∑
λ=0

|Iλ| =
Λ−1∑
λ=0

⌈n× 1

kλ
⌉ = n×

[
1−

(
1
k

)Λ
1− 1

k

]
+O(Λ)

= n

[
kΛ − 1

kΛ−1(k − 1)

]
+O(Λ) ≈ (≤) n×

[
k

k − 1

]
︸ ︷︷ ︸

∆k

(15)

Thus, |I| ≤ n×∆k, with ∆k = k
k−1 ≥ 1 being the dilation factor of the tree. Let us now examine

the computational complexity of Sequoia’s efficient attention scheme, both in terms of runtime and
memory :

CSequoia(n) = Cchildren(n) + Csiblings(n) + Cancestors(n) (16)

Cchildren(n) , Csiblings(n) , Cancestors(n) =

Λ−1∑
λ=1

Cchildren(n, λ) ,

Λ−1∑
λ=0

Csiblings(n, λ) ,

Λ−2∑
λ=0

Cancestors(n, λ)

(17)

∀λ ∈ [0,Λ− 1] Cchildren(n, λ), Csiblings(n, λ) = O(|Iλ| × k)

∀λ ∈ [0,Λ− 1] Cancestors(n, λ) = O(|Iλ| × (Λ− λ)) = O(|Iλ| × Λ)
(18)

Using the upper bound on the number of nodes in the tree constructed by Sequoia, we get :

Cchildren(n) = O

(
Λ−1∑
λ=0

|Iλ| × k

)
≈ (≤) n× k ×∆k

Cancestors(n) = O

(
Λ−1∑
λ=0

|Iλ| × Λ

)
≈ (≤) n× Λ×∆k

(19)

For Csiblings(n), we obtain a similar bound as for Cchildren(n). We finally derive the following class of
quasilinear computational complexity for our proposed attention model :

CSequoia(n) = O
(
n×

[
2×

[
k

k − 1

]
+ Λ

])
= O(n× (k + log(n)) (20)

Indeed, the tree depth is such that Λ = ⌈ log(n)
log(k) ⌉ ≤

log(n)
log(k) + 1 = O(log(n)). In particular, we notice

that this upper bound on CSequoia(n) does not depend on the mode of computation of attention inside
a given transformer block (bottom-up / top-down or parallel), and that the total complexity of
Sequoia’s attention scheme is dominated by the attention computed at the first level of the tree7. A
more thorough investigation of the scaling capabilities of our model for various branching factors k
demonstrates two interesting phenomena :

7Precisely, siblings attention on the first level and, to a lesser extent, ancestors attention on the first level.
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• For small k (in our experimental setting, typically for k ≤ 8), the total complexity is
dominated by the sequential nature of computations, even though each level of attention
computation is relatively inexpensive.

• For large k (k ≥ 32), the receptive field of the first level’s sibling attention dramatically
increases, approximating vanilla attention.

Therefore, in order to strike a good balance between quality of approximation and computational
efficiency, we chose to set k = 16 for the remainder of this paper unless indicated otherwise.

C.2 Experiment settings

C.2.1 Experimental settings on point cloud

Construct tree from point cloud dataset: Regarding the setup of the experiments, as the point
clouds are unordered, it is non-trivial to build the tree. Here, for each point cloud, we divide it into
boxes iteratively and the center of the box is the parent nodes of the points inside. The points are
considered as the leaf of the tree. Notably, the feature of the parent nodes is aggregated by pooling
features of its children. Furthermore, the nodes at higher level of the tree have the larger dimension
in terms of features since their contains information for larger region in a point cloud, compared to
the lower nodes.

Adapt normal softmax attention to point cloud dataset: In terms of the baseline using normal
softmax attention, directly applying the methods to the point cloud results in excessive computational
requirements. Therefore, in this network, we only allow the point to pay attention to its K nearest
neighbors.

Experiment hyper-parameters and optimizer: In our experiments, we find that the tree with a
depth of 3 and a branching factor equal to 3 is the most effective setup because the larger tree increases
complexity without improving the performance. In terms of attention type, we set our attention as
bottom-up and allow a node to pay attention to its direct-parent, children, and siblings. Moreover, the
weight of all Transformer layers is shared, so the number of parameters remains the same when we
stack the layers in the networks. In all experiments, our model has 4 Transformer layers. The other
configurations are kept the same as other works. In particular, the optimizer used in both experiments
is SGD (learning rate = 0.05, momentum = 0.9, and weight decay = 0.0001) and we train the model
for 200 epochs with a batch size of 32 for ModelNet40[36] and 16 for ShapeNetPart[17].

C.2.2 Experimental settings on LRA

We train our model (Sequoia) on a representative array of sequence classification tasks taken from
the LRA suite :

1. IMDB : text (byte-level) classification.

2. Cifar10 : image classification from raw digits read in raster order.

3. Listops : parsing of hierarchical mathematical structures.

4. Retrieval : byte-level document matching.

5. Pathfinder-32-Baseline : image classification for path connectedness prediction.

For experimental simplicity, we decided to use a standard model backbone configuration throughout
all sequence classification experiments. More specifically, our model has 4 transformer layers, with
an intermediate feature dimension of 512 split across 4 heads. We use dropout of p = 0.1 on the
attention matrix. We also share the same optimizer settings for all datasets : batch size of 32 with a
learning rate of 0.001 with linear warmup. The accuracy reported corresponds to the test accuracy
obtained on the best performing model according to validation rounds carried out every 2,000 training
steps throughout the training procedure. For Pathfinder-32, we use the "baseline" version of the task.

Whenever we refer to efficient transformer models by nystrom-64, linformer-64 or
performer-64, 64 respectively corresponds to the number of landmarks of Nystromformer,
Linformer’s k parameter and the RP dimension of the Performer model. Regarding our proposed
model, Sequoia, we use k = 16 and a bottom-up sequential attention scheme (i.e. we start by
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updating the leaf nodes up until the root node). As an input to the MLP classification head, we
provide the root node of the tree. Furthermore, for our sequence classification task, we get rid of
ancestors attention (i.e. there is only bottom-up information propagation between the nodes across
the tree). Indeed, we do not need our model to make tokenwise predictions but only an overall
prediction for the entire sequence, and this allows us to further reduce the computational burden
of our model. We leave the study of the respective contribution to final performance of the three
nodewise attention neighbourhoods (children, siblings and ancestors), as well as ablations regarding
the key ingredients to the success of our model, to future work.

C.3 Efficiency benchmarking

C.3.1 Efficiency Benchmarking on Point Cloud:

In this section, we conduct experiments on the number of points, the number of sibling neighbors,
the number of Transformer layers, and the node feature to observe their impacts on the performance,
complexity, and runtime of the model. All the results are reported in 3, 4, 5, and 6 respectively.

As observed from 3 and 4, the Sequoia with 4 layers and 8 siblings’ attention gives us the best
result. Increasing those hyper-parameters may negatively affect both performance and computational
requirements. In terms of the feature of node 5, directly using the root node for classification achieves
better accuracy than pooling inner nodes and leaf nodes. This result is reasonable because the root
node has the highest number of feature dimensions which can store more meaningful global features
of the point cloud. Eventually, the benchmark in table 6 shows how our model scale with the number
of points in the point cloud.

Numbers of siblings Overall Accuracy Training time Infer time
4 89.3 16.0ms 9.2ms
8 92.0 16.8ms 9.6ms
16 90.6 18ms 10ms

Table 3: Shape Classification results on the ModelNet40 dataset with different siblings neighbours

Layers Overall Accuracy Training time Infer time FLOPs Parameters
1 88.4 3.6ms 2.8ms 0.23G FLOPs 10.9M
2 88.5 7.2ms 5.3ms 0.46G FLOPs 10.9M
4 92.0 16.8ms 9.6ms 0.95G FLOPs 10.9M
5 90.7 18.0ms 10.2ms 1.15G FLOPs 10.9M

Table 4: Shape Classification results on the ModelNet40 dataset with different layers

Type Overall Accuracy
Root Node 92.0
Average Inner Nodes 90.5
Average Leaf Nodes 90.2

Table 5: Shape Classification results on the ModelNet40 dataset with different types of nodes

Numbers of points FLOPs Infer time
64 0.35G 3.4ms
256 0.51G 3.9ms
1024 0.95G 9.6ms
4096 2.62G 24.8ms

Table 6: Shape Classification with different number or points
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C.4 Efficiency benchmarking for long-range sequence classification

Computing scalar-dot-product between queries and the sparse selection of keys (children, siblings and
ancestors) via tensor re-indexing is highly hardware inefficient given the sparse nature of Sequoia’s
computational graph compared to full vanilla attention. This could be done more efficiently using
scatter functions which we leave to future work. We also intend to merge the three attention types
(computed one after the other) into a single multiresolution attention function (computed in parallel)
which will further help improve Sequoia’s efficiency.

Sequence length Sequoia (ours) Softmax
2,048 1.65s 0.91s
4,096 3.35s 1.71s
8,192 6.89s 6.85s
16,384 14.13s 26.33s
32,768 28.93s OOM
65,536 57.39s OOM

Table 7: Efficiency benchmarking of Sequoia for multiple sequence lengths (10-samples batch on 1
RTX8000 GPU). We observe that Sequoia becomes more runtime-efficient than Vanilla attention at
around 9,000 tokens.
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