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Contemporary graph learning algorithms are not well-suited for large molecules since they do not consider the hierarchical
interactions among the atoms, which are essential to determine the molecular properties of macromolecules. In this
work, we propose Multiresolution Graph Transformers (MGT), the first graph transformer architecture that can learn
to represent large molecules at multiple scales. MGT can learn to produce representations for the atoms and group
them into meaningful functional groups or repeating units. We also introduce Wavelet Positional Encoding (WavePE),
a new positional encoding method that can guarantee localization in both spectral and spatial domains. Our proposed
model achieves competitive results on three macromolecule datasets consisting of polymers, peptides, and protein-ligand
complexes, along with one drug-like molecule dataset. Significantly, our model outperforms other state-of-the-art
methods and achieves chemical accuracy in estimating molecular properties (e.g., GAP, HOMO and LUMO) calculated
by Density Functional Theory (DFT) in the polymers dataset. Furthermore, the visualizations, including clustering results
on macromolecules and low-dimensional spaces of their representations, demonstrate the capability of our methodology
in learning to represent long-range and hierarchical structures. Our PyTorch implementation is publicly available at
https://github.com/HySonLab/Multires-Graph-Transformer.

I. INTRODUCTION

Macromolecules are long-range and hierarchical structures
as they consist of many substructures. While small molecules
in existing datasets1–3 comprise less than 50 atoms connected
by simple rings and bonds, this number in a macromolecule
can be dozens or even hundreds. Substructures such as
repeating units and functional groups are intrinsic parts of
macromolecules; they present unique chemical reactions
regardless of other compositions in the same molecules4.
Therefore, studying the multiscale, i.e. multiresolution,
characteristic of large molecules is imperative to gain
comprehensive knowledge about real-life materials like
polymers or proteins5. In recent years, several works6–8

have been proposed to apply machine learning algorithms to
learn macromolecules at multiple scales. These approaches,
however, rely on thorough feature selection and extraction,
which are not efficient when learning from large databases of
materials6.

Message passing is a prevailing paradigm for designing
neural networks that operate on graph-structured data. Previous
studies9–13 have proposed different strategies to perform
message passing on graphs and achieved remarkable results
across various domains. However, message-passing-dominated
graph neural networks (GNNs) have some limitations, such
as limited expressiveness capability13,14, over-smoothing15–17,
over-squashing18 issues. Over-smoothing exists in graph
neural networks that consist of a sufficiently large number
of layers, and node representations are likely to converge to
a constant after going through these deep networks. Over-
squashing problems occur when messages are ineffectively
propagated and aggregated through bottlenecks on long-range

graph structures. These two shortcomings hinder GNNs from
making good predictions on long-range and hierarchically
structured data. Furthermore, the molecular properties of large
molecules are formed not only by interactions among atoms
within neighborhoods but also by distant atoms. Therefore,
local information is not sufficient to model macromolecules.

Transformers are classes of deep learning models that
leverage self-attention mechanisms to handle long-range
dependencies in various data domains, such as natural
language processing19,20 or computer vision21,22. In graph
domains, Transformer-like architectures23–26 have proved their
effectiveness in learning node representations as they can
overcome the over-smoothing and over-squashing issues by
directly measuring the pairwise relationships between the
nodes. Contrary to GNNs, graph transformers do not use
the graph structure as hard-coded information. They, instead,
encode positional and structural information on graphs as
soft inductive bias, making them flexible learners in graph
learning problems23,27. Node positional representations can
be derived based on spectral28,29 or spatial30,31 domains.
Most existing spectral-based methods decompose the graph
Laplacian into sets of eigenvectors and eigenvalues. However,
these eigenvectors have sign ambiguity and are unstable due to
eigenvalue multiplicities32. On the other hand, spatial-based
approaches compute the shortest distances among the nodes;
however, these encoding methods do not consider the structural
similarity between nodes and their neighborhoods33.

We propose Multiresolution Graph Transformer (MGT) and
Wavelet Positional Encoding (WavePE), using multiresolution
analysis on both spectral and spatial domains for learning to
represent hierarchical structures. Our contributions are four-
fold:
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• We design Multiresolution Graph Transformer (MGT),
a Transformer-like architecture that can operate on
macromolecules at multiple scales. Our proposed model
can learn the atomic representations and group them
into meaningful clusters via a data-driven algorithm.
Finally, the substructures, i.e. clusters, are fed to a
Transformer encoder to calculate the representations of
several substructures in macromolecules.

• We introduce Wavelet Positional Encoding (WavePE),
a new positional encoding scheme for graph-structured
data. Since wavelet analysis can provide localization in
both spatial and spectral domains, we construct a set of
wavelets to capture the structural information on graphs
at different scales. Then, we apply equivariant encoding
methods to project the wavelet tensors into positional
representations for the atoms.

• We show the effectiveness of our methodology by
reporting its superior performance on three molecular
property prediction benchmarks. These datasets contain
macromolecules, i.e. peptides and polymers, that are
highly hierarchical and consist of up to hundreds of
atoms. Our model achieves the important chemical
accuracy in DFT approximation for the polymers dataset.

• Our visualization demonstrates the comprehensiveness
of our proposed methods in learning to represent large
molecules. In general, we show the representations of
molecules produced by MGT and how MGT determines
and groups the atoms in long-chain molecules.

II. RELATED WORK

a. Hierachical Learning on Molecules Functional
groups or repeating units are essential phenomena in chemistry.
While functional groups constitute large molecules, repeating
units are the primary parts that produce complete polymer
chains. We regard them as substructures. In particular,
similar substructures undergo similar chemical reactions
regardless of the remaining compositions existing in the
molecules4. Previous work has leveraged the hierarchical
property of molecules to improve the performance in molecular
representation learning and generation. Fang et al. 34 , Rong
et al. 35 , and Chen, Park, and Park 36 use functional groups
as prior knowledge to guide the models to predict accurate
molecular properties. For the molecular generation task,
Maziarz et al. 37 and Jin, Barzilay, and Jaakkola 38 follow
several chemical rules to extract substructures and construct a
vocabulary of structural motifs to generate large molecules.

b. Graph Transformers Earlier research efforts have
adopted Transformer-like architectures to graph-structured
data. Dwivedi and Bresson 28 proposed an early approach to
generalize Transformers to graphs using Laplacian positional
encoding and performing self-attention on one-hop neighbors
surrounding center nodes. On the other hand, Kreuzer
et al. 23 compute attention scores on the entire graph with
differentiation between positive and negative edges, while
also using Laplacian positional encoding. Rong et al. 35

introduce GTransformer that utilizes vectorized outputs from

local GNNs as inputs for a Transformer encoder, making
up an effective combination between node local and global
information. Rampášek et al. 25 propose a general framework
that integrates essential components of Graph Transformers,
including positional or structural encoding, graph feature
extraction, local message passing, and self-attention. Also,
Chen, O’Bray, and Borgwardt 33 extract multiple k-hop
subgraphs and feed them to local GNNs to compute their
embeddings, which are then moved to a Transformer encoder.
Graphormer proposed in39 use attention mechanisms to
estimate several types of encoding, such as centrality, spatial,
and edge encodings. In addition, Kim et al. 27 treat all nodes
and edges as independent tokens augmented with orthonormal
node identifiers and trainable type identifiers and fed them to a
standard Transformer encoder. Moreover, Yun et al. 40 generate
multiple meta-paths, i.e. views, of a graph and computed their
pairwise attention scores, before aggregating them into a final
representation for the entire graph. Cai et al. 26 has analyzed
the theoretical relationship between graph transformers and the
conventional message passing neural networks.

c. Graph Positional Encoding Several approaches have
been proposed to encode the positional or structural
representations into node features to improve the
expressiveness of GNNs and Graph Transformers. Node
positions can be determined via spectral or spatial domains.
Spectral-based methods include Laplacian positional
encoding23,28 and random walk positional encoding (RWPE)29.
For spatial-based methods, You, Ying, and Leskovec 30

compute distances of sets of nodes to anchor nodes, whereas
Li et al. 31 calculate the shortest distances between pairs of
nodes.

d. Multiresolution Analysis and Wavelet Theory
Multiresolution Analysis (MRA) has been proposed by41,42 as
a method to approximate signals at multiple scales in which the
signals are decomposed over elementary waveforms chosen
from a family called wavelets (i.e. mother wavelets and father
wavelets), including Haar43, Daubechies44, etc., to produce
the sparse representations. In graph and discrete domains,
Hammond, Vandergheynst, and Gribonval 45 introduced
spectral graph wavelets that are determined by applying
the wavelet operator on the graph Laplacian at multi-levels.
Coifman and Maggioni 46 propose diffusion wavelet that is
a fast multiresolution framework for analyzing functions
on discretized structures such as graphs and manifolds. In
the deep learning era, Rustamov and Guibas 47 and Xu
et al. 48 leverage the power of neural networks for graph
wavelet construction and computation. Hy and Kondor 49

proposed a learning algorithm to construct graph wavelets via
multiresolution matrix factorization50.

III. BACKGROUND

A. Notation

A molecule can be represented as an undirected graph in
which nodes are the atoms and edges are the valency bonds
between them. In particular, we refer to a molecular graph
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as G = (V,E,A,Xv,Xe,P,Vs), where G is an undirected graph
having V = {v1,v2, · · · ,vn} (let n = |V| denote the number
of nodes) and E = {(u,v)|u,v ∈ V} (let ne = |E| denote the
number of edges) as sets of nodes and edges respectively;
also, A ∈ Rn×n is the graph’s adjacency matrix. When a
graph is attributed, we augment G with a matrix arrangement
of node feature vectors Xv = (x1, ...,xn)

T,xi ∈ Rdv and node
positional vectors P = (p1, ..., pn)

T, pi ∈ Rp. Furthermore, the
covalent bonds between atoms are regarded as edge features
and stored in Xe = (e1, ...,ene)

T,ei ∈ Rde . In addition to the
atom-level representation of G, Vs = {vs1 , ...,vsk} denotes
the substructure set in which vsi ⊂ V, i.e. vsi is a subset of
atoms of the molecule. In Section III C, we define methods to
produce features of substructure-level nodes by leveraging the
hierarchical properties of macromolecules.

B. Message-passing Neural Networks

We model the local interactions of atoms using a well-
known class of graph neural networks (GNNs) known as
message-passing neural networks (MPNNs)51. In the context
of modeling molecules, atom nodes communicate with each
other in a local neighborhood by exchanging vectorized
messages. These messages are updated using neural networks.
In particular, the model considers the interactions between
neighboring atoms by modeling the propagation of atomic
features along the covalence bonds in the molecular graph.
With hidden embeddings hu representing each node u ∈V , we
define GNN message-passing mechanism based on a general
framework introduced in [ 51] as

m(l)
u = ∑

v∈N (u)
Ml(h

(l−1)
u ,h(l−1)

v ,e(l−1)
vu ), (1)

h(l)u = Ul(h
(l−1)
u ,m(l)

u ), (2)

e(l)vu = Ue
l (e

(l−1)
vu ,m(l)

u ). (3)

This framework propagates messages on graph G through L
layers. At the lth layer, vectorized messages m(l)

u are computed
based on message functions Ml whose inputs involve three
arguments, including h(l−1)

u and h(l−1)
v are node embeddings of

u and its neighbors v∈N (u), and e(l−1)
vu indicates (vectorized)

edge features between them at the (l− 1)th layer. Then, the
messages are passed to node update functions Ul that calculate
new node embeddings h(l)u for node u using its previous
embedding h(l−1)

u and the messages m(l)
u . In addition, h0

u equals
xu ∈ Xv, the initial atom features. Besides node embeddings,
some MPNNs11,52 use an additional update function Ue

l to

compute new edge embeddings e(l)vu = Ue
l (e

(l−1)
vu ,m(l)

u ). In
general, we write a layer of MPNN that exchange the messages
and updates both node and edge embeddings as

H(l),E(l) = MPNNl(H(l−1),E(l−1),A), (4)

where H(l) and E(l) denote node and edge embeddings at the
lth layer.

For example, graph convolution network (GCN)10 can
be regarded as an MPNN with the message at node u
is m(l)

u = ∑v∈N(u)∪{u}
evu√

|N (v)||N (u)|
h(l−1)

v , which aggregates

the normalized information of neighborhood embeddings
multiplied with the edge weights. A new embedding of node u
is computed using the update function hl

u = σ(Wlm
(l)
u ), where

Wl is a trainable parameter matrix of layer l, and σ denotes
an element-wise nonlinearity (e.g., ReLU, tanh, sigmoid, etc.).
To account for the vectorization of node embeddings, we
can rewrite a layer of GCN as: H(l) = σ(ÃH(l−1)Wl), where
H(0) = Xu, and Ã = D̃−1/2(A+ I)D̃−1/2, where D̃ii = ∑ j Ai j
denotes the diagonal degree matrix.

Node and edge embeddings at the Lth layer can be used for
predicting node-level and edge-level properties. For graph-
level predictions, some readout function R is used to aggregate
all node embeddings to produce an embedding vector z for the
entire graph G as

z = R({h(L)
u |u ∈ V}), (5)

where h(L)
u denotes the embedding vector of node u at the

final Lth layer. Also, R must be invariant with respect to
permutations and differentiable.

C. Hierachical Learning on Molecules

Molecular property prediction is regarded as a graph-level
learning task. We need to aggregate node embeddings into
graph-level vectors which are then fed to a classifier to make
predictions on graphs. Specifically, a function f : V −→
Rdo that maps the atom u ∈ V to a do-dimensional vector
zu ∈ Rdo should learn to produce atom-level embeddings.
Most existing graph neural networks compute the vector
z = R({ f (u)|u ∈ V}) that indicates an embedding for the
entire molecular graph, where R can be sum, mean, max,
or more sophisticated operators. For hierarchical learning,
substructure-level representations can be derived in addition to
atom-level representations by aggregating node representations
in the same substructures as zs = R({ f (u)|u ∈ vs∧ vs ∈ Vs}).
Instead of atom vectors, we aggregate the substructure vectors
to represent the entire graph, i.e. z = R({zs|zs ∈ Vs}). Finally,
a classifier g given z as inputs is trained to predict the molecular
properties.

D. Transformers on Graphs

While GNNs learn node embeddings by leveraging the graph
structure via local message-passing mechanisms, Transformers
disregard localities and directly infer the relations between
pairs of nodes using only node attributes. In other words,
the node connectivity is not utilized in pure transformer-
like architectures19; as a result, the problem is simplified to
learning on sets. Given a matrix of node features X ∈ Rn×d ,
Transformers compute three matrices including query (Q), key
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(K), and value (V ) via three linear transformations Q = XW T
q ,

K = XW T
k , and V = XW T

v . A self-attention matrix (H) can be
computed as follows:

H = softmax
(QKT
√

do

)
V, (6)

where Wq, Wk, and Wv are learnable parameters in Rdo×d ,
resulting in H ∈ Rn×do . Furthermore, H in Eq. 6 denotes an
attention head. To improve effectiveness, multiple {H}h

i=1
are computed, which is known as multi-head attention. All
of the attention heads are concatenated to form a final tensor:
Ho = concat(H1, ...,Hh), where h is the number of attention
heads. Finally, the output X ′, i.e. new node embeddings,
can be computed by feeding Ho into a feed-forward neural
network (FFN), i.e. X ′ = FFN(Ho). It is easy to see that
Transformers operating on inputs without positional encoding
are permutation invariant.

E. Spectral Positional Encoding

As pure Transformer encoders only model the global
interactions between nodes without being cognizant of the
graph structures, node features should be augmented by
positional features to preserve the structural information, which
is critical in graph learning. For spectral positional encodings,
each node u of a weighted graph G having n nodes (see Section
III A) is assigned to a point pu ∈Rm (m << n). Here, given the
adjacency matrix A, the mapping from u to pu should minimize
the "energy" E :

E = ∑
(u,v)∈E

‖pu− pv‖2Auv. (7)

The intuition behind this is that if two neighboring nodes u and
v are "close", then their positional vectors in the m-dimensional
space are close as well. Belkin and Niyogi 53 shows that
the solution is provided by the matrix of eigenvectors that
correspond to m smallest non-trivial eigenvalues of L = D−A,
the Laplacian matrix of graph G, and Dii = ∑ j Ai j.

In particular, to compute node positional features, L are
eigendecomposed first as:

L =UΣUT (8)

here, Σ = diag(λ1,λ2, ...,λn) is the diagonal matrix of n
eigenvalues that are 0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn, and
U = (u1,u2, ...,un)

T, ui ∈ Rn, denotes the matrix of their
corresponding orthogonal eigenvectors, which form a graph
Fourier basis. Then, except for λ1, m smallest eigenvalues
(i.e. λ2 ≤ λ3 ≤ ... ≤ λm) are chosen with their associated
eigenvectors to construct a sub-matrix P ∈ Rn×m of U . In
particular, every row in matrix P corresponds to the first
m values of the respective row in matrix U . The matrix P
serves as a node positional feature, which can be combined
or concatenated with the node atomic features Xv, producing
comprehensive inputs for subsequent Transformers. Figure
1 illustrates this spectral encoding scheme on the Aspirin
C9H8O4 molecular graph.
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FIG. 1: Visualizations of graph adjacency A, graph Laplacian
L, Fourier basis U , and positional encoding feature P on the

molecular graph of Aspirin C9H8O4 with 13 nodes (i.e. heavy
atoms).

IV. WAVELET POSITIONAL ENCODING

A. Spectral Graph Wavelets

Let A∈Rn×n be the adjacency matrix of an undirected graph
G = (V,E). The normalized graph Laplacian is defined as
Lnorm = In− D̃−1/2AD̃−1/2, where In is the identity matrix and
D̃ is the diagonal matrix of node degrees as mentioned in
Section III B. Lnorm can be decomposed into a complete set of
orthonormal eigenvectors U = (u1,u2, ...,un) associated with
real and non-negative eigenvalues {λ}n

1. While graph Fourier
transform uses U as a set of bases to project the graph signal
from the vertex domain to the spectral domain, graph wavelet
transform constructs a set of spectral graph wavelets as bases
for this projection via:

ψs =UΣsUT

where Σs = diag(g(sλ1),g(sλ2), ...,g(sλn)) is a scaling matrix
of eigenvalues, ψs = (ψs1,ψs2, ...,ψsn) and each wavelet ψsi
indicates how a signal diffuses away from node i at scale
s; we choose g(sλ ) = e−sλ as a heat kernel54. Since a
node’s neighborhoods can be adjusted by varying the scaling
parameter s55, using multiple sets of wavelets at different
scales can provide comprehensive information on the graph’s
structure. It means that larger values of si correspond to larger
neighborhoods surrounding a center node. Figure 2 illustrates
how wavelets can be used to determine neighborhoods at
different scales on a molecular graph. In this work, we leverage
this property of graph wavelets to generate node positional
representations that can capture the structural information of a
center node on the graph at different resolutions. We employ
k diffusion matrices {ψsi}k

i=1 in which each ψsi has a size
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scale = 6 scale = 10

scale = 4scale = 2

FIG. 2: Visualization of some of the wavelets with scaling parameters on the Aspirin C9H8O4 molecular graph with 13 nodes (i.e.
heavy atoms). The center node is colored yellow. The colors varying from bright to dark illustrate the diffusion rate from the

center node to the others, i.e. nodes that are closer to the center node have brighter colors. Low-scale wavelets are highly
localized, whereas the high-scale wavelets can spread out more nodes on the molecular graphs

of n× n, resulting in a tensor of graph wavelets P ∈ Rn×n×k.
Additionally, WavePE is a generalized version of RWPE29 as
the random walk process can be regarded as a type of discrete
diffusion. In the following section, we demonstrate the use
of tensor contractions to generate a matrix of node positional
representations P ∈ Rn×k from P. In general, Figures 3 and 4a
demonstrate our wavelet positional encoding method.

B. Equivariant Encoding

It is important to note that our spectral graph wavelets
computed from the previous section must be further encoded
in a permutation-equivariant manner. For simplicity, that
means if we permute (i.e. change the order) the set of nodes,
their position encodings must be transformed accordingly.
In this section, we formally define permutation symmetry,
i.e. symmetry to the action of the symmetric group, Sn, and
construct permutation-equivariant neural networks to encode
graph wavelets. An element σ ∈ Sn is a permutation of order n,
or a bijective map from {1, . . . ,n} to {1, . . . ,n}. For example,
the action of Sn on an adjacency matrix A ∈ Rn×n and on a
latent matrix (i.e. node embedding matrix) Z ∈ Rn×dz are:

[σ ·A]i1,i2 = Aσ−1(i1),σ−1(i2), [σ ·Z]i, j = Zσ−1(i), j,

for σ ∈ Sn. Here, the adjacency matrix A is a second-order
tensor with a single feature channel, while the latent matrix
Z is a first-order tensor with dz feature channels. In general,
the action of Sn on a k-th order tensor X ∈ Rnk×d (i.e. the last
index denotes the feature channels) is defined similarly as:

[σ ·X ]i1,..,ik, j = Xσ−1(i1),..,σ−1(ik), j, σ ∈ Sn.

Formally, we define these equivariant and invariant properties
in Def. IV.1 and equivariant neural networks in Def. IV.2.

Definition IV.1. An Sn-equivariant (or permutation
equivariant) function is a function f : Rnk×d → Rnk′×d′ that
satisfies f (σ ·X) = σ · f (X) for all σ ∈ Sn and X ∈ Rnk×d .
Similarly, we say that f is Sn-invariant (or permutation
invariant) if and only if f (σ ·X) = f (X).

Definition IV.2. An Sn-equivariant network is a function
f :Rnk×d→Rnk′×d′ defined as a composition of Sn-equivariant
linear functions f1, .., fT and Sn-equivariant nonlinearities
γ1, ..,γT :

f = γT ◦ fT ◦ ..◦ γ1 ◦ f1.

On the another hand, an Sn-invariant network is a function
f : Rnk×d → R defined as a composition of an Sn-equivariant
network f ′ and an Sn-invariant function on top of it, e.g., f =
f ′′ ◦ f ′.

In order to build permutation-equivariant neural networks,
we revisit some basic tensor operations: the tensor product
A⊗ B (see Def. IV.3) and tensor contraction A↓x1,..,xp

(see
Def. IV.4). It can be shown that these tensor operations respect
permutation equivariance56,57.

Definition IV.3. The tensor product of A∈Rna
with B∈Rnb

yields a tensor C = A⊗B ∈ Rna+b
where

Ci1,i2,..,ia+b = Ai1,i2,..,iaBia+1,ia+2,..,ia+b .

Definition IV.4. The contraction of A ∈Rna
along the pair of

dimensions {x,y} (assuming x < y) yields a (a− 2)-th order
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tensor

Ci1,..,ix−1, j,ix+1,..,iy−1, j,iy+1,..,ia = ∑
ix=iy

Ai1,..,ia ,

where we assume that ix and iy have been removed from
amongst the indices of C. Using Einstein notation, this can be
written more compactly as

C{i1,i2,..,ia}\{ix,iy} = Ai1,i2,..,iaδ
ix,iy ,

where δ is the Kronecker delta. In general, the contraction of
A along dimensions {x1, ..,xp} yields a tensor C = A↓x1,..,xp

∈
Rna−p

where

A↓x1,..,xp
= ∑

ix1

∑
ix2

...∑
ixp

Ai1,i2,..,ia ,

or compactly as

A↓x1,..,xp
= Ai1,i2,..,iaδ

ix1 ,ix2 ,..,ixp .

Based on these tensor contractions and Def. IV.1, we can
construct the second-order Sn-equivariant networks encoding
a graph with adjacency matrix A ∈ Rn×n, node features Xv ∈
Rn×dv and edge features Xe ∈ Rn×n×de as in Section IV B 1:

f = γ ◦MT ◦ ..◦ γ ◦M1.

The “raw” graph wavelets can be treated as a second-order
tensor of size n× n× k where k is the number of scales,
similarly as the edge features. We employ the higher-order
permutation-equivariant message passing proposed by Maron
et al. 58 , Hy et al. 56 and Kondor et al. 57 to encode the “raw”
graph wavelets from size n× n× k into n× k that will be
further used as nodes/tokens’ embeddings of our Transformer
architecture (see Figures 3 and 4).

1. Second-order message passing

The second order message passing has the embedding
matrix H0 ∈R|V|×|V|×(dv+de) initialized by promoting the node
features Xv to a second order tensor (e.g., we treat node features
as self-loop edge features), and concatenating with the edge
features Xe. Iteratively,

Ht = γ(Mt), Mt =Wt

[⊕
i, j

↓ (A⊗Ht−1)i, j

]
, (9)

where A⊗Ht−1 results in a fourth order tensor while ↓i, j
contracts it down to a second order tensor along the i-th and
j-th dimensions, ⊕ denotes concatenation along the feature
channels, and Wt denotes a multilayer perceptron on the feature
channels. We remark that the popular MPNNs51 is a lower-
order one and a special case in which Mt = D̃−1AHt−1Wt−1
where D̃ii = ∑ j Ai j is the diagonal matrix of node degrees (see
Section III B). The embedding matrix HT of the last iteration
is still second order, so we contract it down to the first order
latent Z =

⊕
i ↓ HT i.

FIG. 3: Demonstration of three basic tensor contractions (i.e.
diagonal, row sum, and column sum) on a second-order tensor
of size n×n× k that is resulted from concatenating the “raw”
graph wavelets at k different scales (see Fig. 2). In this case of

Aspirin molecule, n = 13 and k = 4.

V. MULTIRESOLUTION GRAPH TRANSFORMERS

In this section, we present Multiresolution Graph
Transformers (MGT), a neural network architecture for
learning hierarchical structures. MGT uses Transformers
to yield the representations of macromolecules at different
resolutions. While previous work either neglects the
hierarchical characteristics of large molecules or fails to
model global interactions between distant atoms, our proposed
approach can satisfy these two properties via multiresolution
analysis. Figs. 4b and 4c show an overview of our framework.
MGT consists of three main components: an atom-level
encoder, a module to extract substructures, and a substructure-
level encoder. We use a graph transformer to generate the
atomic embeddings. Then, substructures present in molecules
are extracted by a learning-to-cluster algorithm. The molecular
graph is coarsened into a set of substructures, and we use a
pure Transformer encoder to learn their relations.

A. Atom-Level Encoder

To utilize the proposed wavelet positional encoding
demonstrated in Section IV, we leverage the design of the
graph transformer proposed by Rampášek et al. 25 , which is a
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Concatenation Equivariant  
Encoding

Wavelet Positional  
Representations

K scales

(a)

L GPS Layers

WavePE

(b)

Transformer Encoder

Learning to cluster

(c)

FIG. 4: Overview of Wavelet Positional Encoding (WavePE) and Multiresolution Graph Transformer (MGT). a) k diffusion
matrices of size N×N are stacked together to produce a wavelets tensor with size N×N×K which are contracted by equivariant

encoding methods to yield a tensor of positional representation N× k. b) Atomic representations are derived by passing the
molecular graph augmented with positional features through L layers of GPS (i.e. scalable Graph Transformer proposed in [ 25]).
c) A macromolecule is decomposed into several substructures in which the features are aggregated from the atom-level outputs,

resulting in a set of substructures that are moved to a Transformer encoder.

general, powerful, and scalable Graph Transformer (GPS) for
graph representation learning. Let A ∈ Rn×n be the adjacency
matrix of a graph with n nodes and ne edges; X (l) and E(l) are
node and edge features at layer lth, respectively. In addition,
X (0) ∈ Rn×d and E(0) ∈ Rne×d are initial atom and bond
features embedded in d-dimensional spaces created by two
embedding layers. The wavelet positional vectors p ∈ Rn×k

are fed to an encoder (e.g., a feed-forward neural network or a
linear transformation), yielding a matrix of positional features
P∈Rn×dp . We let X (0) = concat(X (0),P) to produce new node
features X (0) ∈ Rn×(d+dp). From here, we define d = d +dp,
and for convenience, the output dimensions of all layers are
equal to d.

Each layer of GPS uses a message-passing neural network
(MPNNl) to exchange messages within the neighborhood and
a self-attention layer (SAl) described in Equation 6 to compute
global interactions among distant nodes:

X (l)
loc,E

(l) = MPNNl(X (l−1),E(l−1),A), (10)

X (l)
glob = SAl(X (l−1)), (11)

X (l) = FFNl(X
(l)
loc +X (l)

glob), (12)

where X (l)
loc and X (l)

glob are node local and global embeddings;
they are unified into X (l) via Eq. 12. Popular techniques such
as Dropout59 and normalization60,61 are omitted for the sake of
clarity. By feeding the molecular graph through L layers, we
obtain two matrices Xa = X (L) and Ea = E(L) indicating the
atom-level node and edge embeddings, respectively.

B. Learning to Cluster

In this work, we use a message-passing neural network
augmented with differentiable pooling layers62,63 to cluster the

atoms into substructures automatically:

Z = MPNNe(Xa,Ea,A), (13)
S = Softmax(MPNNc(Xa,Ea,A)), (14)

where MPNNe and MPNNc are two-layer message-passing
networks that learn to generate node embeddings (Z ∈ Rn×d)
and a clustering matrix (S ∈Rn×C), respectively; C denotes the
number of substructures in molecules. A matrix of the pooled
embeddings Xs ∈ RC×d for the substructures is computed:

Xs = ST Z. (15)

This learning-to-cluster module is placed after the atom-level
encoder. Intuitively, atom nodes updated with both local
and global information should be classified into accurate
substructures.

C. Substructure-level Encoder

Given a set of substructures Vs with a matrix of embeddings
Xs ∈ RC×d , we forward Xs to L conventional Transformer
encoder layers19 to capture their pairwise semantics:

H(l)
1 = LayerNorm(SAl(H(l−1))+H(l−1)), (16)

H(l) = LayerNorm(FFNl(H
(l)
1 )+H(l)

1 ), (17)

where SA refers to (multi-head) self-attention described in Eq.
(6), and H(0) is equal to Xs. Additionally, we add a long-range
skip connection to alleviate gradient vanishing as:

Hs = FFN(concat(H(0),H(L))), (18)

where Hs ∈ RC×d is the output indicating the representations
for the substructures. Finally, we aggregate all C vectors
hs ∈ Hs to result in a unique representation z ∈ Rd for the
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molecules (refer to Section III C), before feeding it to a feed-
forward network to compute the final output ŷ∈Rn

c for property
prediction:

z = R({hs}Cs=1), (19)
ŷ = FFN(z). (20)

a. Training Objective We train MGT by minimizing the
objective L that is defined as:

L = L1 +λ1LLP +λ2LE , (21)

where L1 , `(ŷ,y) denotes the loss function between predicted
values and ground truths (e.g., cross-entropy or mean-squared
error), LLP , ‖A− SST‖F indicates auxiliary link prediction
loss (‖·‖F denotes the Frobenius norm), and LE , 1

n ∑
n
i=1 H(Si)

denotes the entropy regularization of the cluster assignment,
i.e. each atom should be assigned into a unique cluster.
Additionally, λ1 and λ2 are hyperarameters.

VI. FAST COMPUTATION ON LARGE GRAPHS

Although Transformers with graph spectral encoding
schemes offer remarkable performance in capturing long-range
interactions on molecular graphs, these approaches are not
scalable when the graph sizes become larger. Computing
eigenvalues on large graphs remains a challenging problem as it
requires O(n3) time complexity where n is the number of nodes.
Furthermore, Transformers-based models (see Section III D)
that work on fully-connection graphs also have scalability
drawbacks as they exhibit quadratic computations64.

Although equivariant encoding schemes are theoretically
expensive when dealing with fourth-order tensors (see Eq. 9),
we do not need to store all elements of these tensors by
leveraging their sparsity (i.e. ignoring all zero entries in the
adjacency matrix). This can reduce the space complexity to
less than O(n4) in the case of fourth-order tensors, where n
is the number of nodes. Regarding the time complexity, it
is proportional to O(mn2), where m denotes the number of
edges. In fact, molecules are generally tree-like structures;
hence, m=O(n). Therefore, the theoretical time complexity of
general equivariant encoding is O(n3)56. However, in practice,
we can further improve this complexity extensively by pre-
computation for some special cases of contractions like in
Figure 3.

In this section, we present several modifications to our
proposed methods that can scale to graphs of hundreds of
atoms, such as protein-ligand complexes. To accelerate
positional encoding on a large graph, we partition it into
multiple separate subgraphs and compute graph wavelets on
each of them. We reduce tensor contractions to diagonalization,
row sum, and column sum. Furthermore, by design, the self-
attention layer in Equation 12 of the atom-level encoder in
Section V A can be eliminated without affecting the entire
pipeline, and the atom nodes only exchange the messages
within their neighborhoods. This, as a result, prevents quadratic

(a) (b)

FIG. 5: Examples of two macromolecules. a) An example of a
peptide that consists of many functional groups. b) An

example of a polymer that consists of many repeating units

computations of the self-attention mechanism when the graph
becomes exceedingly large. Albeit only computing local
interactions in the atom-level encoder, MGT can take into
account interactions between distant atoms at the substructure-
level resolution as embeddings of the atoms are aggregated
into their corresponding substructures.

VII. EXPERIMENTS

We empirically validate our proposed approach in two types
of macromolecules including peptides and polymers. Figure
5 illustrates two examples of macromolecules in the datasets.
Our PyTorch implementation is publicly available at https://
github.com/HySonLab/Multires-Graph-Transformer.

A. Polymer Property Prediction

In modern quantum chemistry, density functional theory
(DFT) is the most widely used and successful approach for
computing the electronic structure of matter. Even though
DFT is able to calculate many properties of molecular systems
with high accuracy, the computational cost is significantly
expensive, especially for macromolecules with hundreds or
thousands of atoms. Polymers are long chains of repetitive
substructures known as repeating units. They, as a result, are
also hierarchically structured and contain various types of long-
range dependencies among the atoms. Since polymers have
a wide range of applications in daily life, it is essential to
understand their molecular properties. In this section, we
demonstrate the efficacy of our proposed model, MGT, along
with atomic positional encoding in estimating DFT calculation
on polymers.

a. Experimental Setup We use a polymer dataset
proposed in65. Each polymer is associated with three types
of density functional theory (DFT)66 properties including the
first excitation energy of the monomer calculated with time-
dependent DFT (GAP), the energy of the highest occupied
molecular orbital for the monomer (HOMO), and the lowest
unoccupied molecular orbital of the monomer (LUMO). The
dataset is split into train/validation/test subsets with a ratio
of 8:1:1, respectively. For training, we normalize all learning
targets with a mean of 0 and a standard deviation of 1.

b. Baselines and Implementation Details As there are no
existing baselines on this dataset, we perform experiments with
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Model No. Params Property

GAP HOMO LUMO

DFT error 1.2 2.0 2.6
Chemical accuracy 0.043 0.043 0.043

GCN 527k 0.1094 ± 0.0020 0.0648 ± 0.0005 0.0864 ± 0.0014
GCN + Virtual Node 557k 0.0589 ± 0.0004 0.0458 ± 0.0007 0.0482 ± 0.0010
GINE 527k 0.1018 ± 0.0026 0.0749 ± 0.0042 0.0764 ± 0.0028
GINE + Virtual Node 557k 0.0870 ± 0.0040 0.0565 ± 0.0050 0.0524 ± 0.0010

GPS 600k 0.0467 ± 0.0010 0.0322 ± 0.0020 0.0385 ± 0.0006
Transformer + LapPE 700k 0.2949 ± 0.0481 0.1200 ± 0.0206 0.1547 ± 0.0127

MGT + LapPE (ours) 499k 0.0378 ± 0.0004 0.0270 ± 0.0010 0.0300 ± 0.0006
MGT + RWPE (ours) 499k 0.0384 ± 0.0015 0.0274 ± 0.0005 0.0290 ± 0.0007
MGT + WavePE (ours) 499k 0.0387 ± 0.0011 0.0283 ± 0.0004 0.0290 ± 0.0010

TABLE I: Experimental results on the polymer property prediction task. All the methods are trained in four different random
seeds and evaluated by MAE ↓. Our methods are able to attain better performance across three DFT properties of polymers while

having less number of parameters. All the properties are measured in eV.

Model No.Params Peptides-struct Peptides-func

MAE ↓ AP ↑

GCN 508k 0.3496 ± 0.0013 0.5930 ± 0.0023
GINE 476k 0.3547 ± 0.0045 0.5498 ± 0.0079
GatedGCN 509k 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + RWPE 506k 0.3357 ± 0.0006 0.6069 ± 0.0035

Transformer + LapPE 488k 0.2529 ± 0.0016 0.6326 ± 0.0126
GPS — 0.6535 ± 0.0041 0.2500 ± 0.0005
SAN + LapPE 493k 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN + RWPE 500k 0.2545 ± 0.0012 0.6562 ± 0.0075

MGT + LapPE (ours) 499k 0.2488 ± 0.0014 0.6728 ± 0.0152
MGT + RWPE (ours) 499k 0.2496 ± 0.0009 0.6709 ± 0.0083
MGT + WavePE (ours) 499k 0.2453 ± 0.0025 0.6817 ± 0.0064

TABLE II: Results on peptides property prediction.

four different models for comparisons. For local GNNs, we
use GCN10 and GINE13,67 augmented with virtual nodes as the
baselines. The implementation of local GNN models is taken
from https://github.com/snap-stanford/ogb/tree/
master/ogb. Moreover, we use standard Transformer19 with
Laplacian positional encoding28 and GPS25 as the baselines
for Transformer-based architectures. The implementation of
MGT is similar to the Peptide tasks.

Table III shows the implementation of the baselines we used
in the polymer experiments. All the models are designed to
have approximately 500 to 700k learnable parameters. For fair
comparisons, all the models are trained in 50 epochs with a
learning rate of 0.001 and batch size of 128.

c. Results As shown in Table I, our MGT models achieve
the lowest MAE scores across three properties. In addition,
WavePE can attain comparable results with LapPE and RWPE
for this task. We observe that the vanilla Transformer has the
poorest performance. This demonstrates that computing global
information without the awareness of locality is not sufficient
for macromolecular modeling. As described in Section V,

Model No. Layer Embed Dim No. Params

GCN 5 156 527k
GCN + Virtual Node 5 156 557k
GINE 5 120 527k
GINE + Virtual Node 5 120 557k
GPS 3 120 600k
Transformer + LapPE 6 120 700k

TABLE III: The detailed settings of baselines for polymer
property prediction

MGT is an extended version of GPS. In particular, a learning-
to-cluster module and a substructure-level Transformer encoder
are extensions to GPS. The better performance of MGT, as a
result, indicates that our methodology in modeling hierarchical
structures is appropriate and reasonable.

There are two important benchmark error levels: (1) “DFT
error”, the estimated average error of the DFT approximation
to nature; and (2) “chemical accuracy”, the target error that
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FIG. 6: The clustering result on a peptide. MGT can group the
atoms of a long peptide into different substructure types.

Specifically, the groups NH3 and OH are recognized even
though the atoms are located distantly. Also, local rings or

segments are also detected.

has been established by the chemistry community. Estimates
of DFT error and chemical accuracy are provided by Faber
et al. 68 . Our model is the only one to achieve the chemical
accuracy for all three molecular properties.

B. Peptides Property Prediction

Peptides are small chains of amino acids found in nature
that serve a variety of critical biological roles69; however, they
are far shorter than proteins. Because each amino acid is made
up of several heavy atoms, a peptide’s molecular graph is
significantly greater than that of a small drug-like molecule.
Since peptides are formed by sequences of amino acids, they
are naturally hierarchical and long-range dependencies64, i.e. a
peptide should be ideally segmented into an exact set of amino
acids. Therefore, we evaluate our method on peptide structures
to demonstrate its superiority.

a. Experimental Setup We run experiments on two real-
world datasets including (1) Peptides-struct and (2) Peptides-
func of the Long-range Graph Benchmark64. The two datasets
are multi-label graph classification problems and share the
same peptide molecular graphs, but with different tasks. While
the former consists of 10 classes based on peptides function,
the latter is used to predict 11 aggregated 3D properties of
peptides at the graph level. For a fair comparison, we follow
the experimental and evaluation setting of64 with the same
train/test split ratio. We use mean absolute error (MAE) and
average precision (AP) to evaluate the method’s performance
for Peptides-struct and Peptides-func, respectively.

b. Baselines and Implementation Details We compare
our proposed approach with the baselines from64. The
local message-passing network class involves GCN10,
GCNII52, GINE13,67, and GatedGCN52. For Transformer-
based architectures, we compare our method with vanilla
Transformer19 with Laplacian PE28,70 and SAN23. Since
all baselines are limited to approximately 500k learnable
parameters, we also restrict MGT to roughly the same number

FIG. 7: The clustering result on a polymer. By learning to
cluster and using a substructure-level Transformer encoder,
MGT can model repetitive patterns existing in polymers. In
this example, the model can recognize repeating units in a

long-chain polymer or even symmetries.

of parameters. Additionally, we use GatedGCN52 for local
message passing customized with the PEG technique to
stabilize the positional features71. The implementation of GPS
is adapted from https://github.com/vijaydwivedi75/
lrgb.git. We experiment with each task in four different
random seeds. We provide further implementation details of
MGT for this task in Section VII G.

c. Results Table II shows that our proposed MGT +
WavePE achieves the best performances in two peptide
prediction tasks. In addition to WavePE, MGT + RWPE
also attains the second-best performances. The superiority of
WavePE to RWPE can be explained as mentioned in Section IV
that WavePE is a generalized version of RWPE. In particular,
our proposed MGT outperforms all the baselines in the Petides-
func task by a large margin and decreases the MAE score to
less than 0.25 in the Petides-struct task.

C. Protein-Ligand binding a�nity prediction

Proteins are large and complex macromolecules that
comprise one or more long chains of amino acid residues.
Understanding the multiscale structure of proteins is important
in estimating their fitness and functionality. In this experiment,
we show the effectiveness of our model in capturing the long-
range and hierarchical structures of proteins, that are larger
than the peptides from Section VII B.

a. Experimental Setup Predicting the binding affinities
between ligands and target pockets is an essential task in
the field of drug discovery. In this section, we present
our experiments conducted on the Ligand Binding Affinity
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FIG. 8: Ablation studies on different numbers of clusters on polymer datasets
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FIG. 9: t-SNE projection of representations of the test polymers in the dataset. We plot the figures of three properties, including
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FIG. 10: Visualization of low-dimensional spaces of peptides on two property prediction tasks: Peptides-func and Peptides-struct.
All the vectors are normalized to range [0,1]. a) t-SNE projection of peptides taken from the Peptides-func testing dataset. We
take four random peptide functions, and each figure corresponds to one of the properties with positive (1) and negative (0) ground

truths. b) Similarly, we plot the figures of four random peptide properties taken from the Peptides-struct testing dataset. The
spectrums represent continuous ground truths, where lower values correspond to cooler colors.
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Method 3D-CNN GNN ENN GVP-GNN MGT + WavePE (ours)

RMSE ↓ 1.416 ± 0.021 1.570 ± 0.025 1.568 ± 0.012 1.594 ± 0.073 1.436 ± 0.066

TABLE IV: Experimental Results on LBA dataset

(LBA) dataset within the Atom3D benchmark72. The
dataset comprises protein-ligand complexes curated from
the PDBBind database73,74 and their corresponding binding
affinities. Moreover, the complexes are represented in terms of
3D point clouds of atoms with 3D coordinates and atomic
features. Our models are trained to predict the value of
pK = − log10(K), where K represents the binding affinity
expressed in Molar units. We follow the original train/test
split settings established by Townshend et al. 72 . Finally, we
report the root-mean-squared error (RMSE) as the primary
metric to compare with other approaches.

b. Baselines and Implementation Details Following the
description from Townshend et al. 72 , we construct 2D graphs
from molecular systems where each atom represents a node.
Edges are determined between atoms that are distant less than
4.5 Å and their weights are defined as wi, j =

1
di, j

. We compare
the performance of our methods with baselines taken from [
71] including:

• 3D-CNN: Three-dimensional Convolutional Neural
Networks on the voxelized representation of the protein-
ligand complex’s point cloud,

• GNN: Graph Neural Networks on the atomic-level
graph,

• ENN: Rotationally-Equivariant Neural Networks75 on
the 3D point cloud representation,

• GVP-GNN: Geometric Vector Perception (GVP)71,76, a
rotationally-invariant feature for protein, is incorporated
into GNN.

Among these methods, except for GNN, the remaining models
work on 3D geometries (e.g., voxels, point clouds, etc.) of
protein-ligand complexes. For our MGT, we use the METIS
algorithm77 to partition the graphs into multiple separated
subgraphs and compute relative Wavelet positional features for
the nodes in each subgraph as described in Section V C. In
addition, the implementation of MGT is almost similar to those
used in the experiments on peptides and polymers in Section
VII A and VII B, with the exception that the self-attention layer
in Equation 11 is not utilized.

c. Results Table IV demonstrates the superior
performance of our proposed methods compared to GNN,
ENN, and GVP-GNN. Notably, the latter two approaches
operate on protein-ligand complexes represented in 3D
structures, whereas our method, MGT, operates on 2D graphs.
Furthermore, our method is comparable with 3D-CNN, a 3D
convolutional neural network working on voxels, which are
computationally expensive when the complexes become larger.

D. Drug-like molecule property prediction

Method No. Params MAE ↓

GCN 505k 0.367 ± 0.011
GINE 510k 0.526 ± 0.051
GAT 531k 0.384 ± 0.007
PNA 387k 0.142 ± 0.010
MPNN 418k 0.145 ± 0.007
GatedGCN 505k 0.214 ± 0.006
SAN 509k 0.139 ± 0.006
Graphormer 489k 0.122 ± 0.006
GPS - 0.070 ± 0.004
Spec-GN 503k 0.0698 ± 0.002

MGT + WavePE (ours) 499k 0.131 ± 0.003

TABLE V: Experimental results on the ZINC-12K dataset

Although MGT is intentionally designed for learning to
represent hierarchical structures, we report its experimental
results on the ZINC-12K dataset3, which consists of small
drug-like molecules, in this section. We train MGT to predict
the solubility (LogP) of the molecules with up to 50 heavy
atoms on a subset of the ZINC dataset. We follow the
split of 10K/1K/1K for training/validation/testing proposed by
Dwivedi et al. 70 . Baseline results include GCN10, GINE13,70,
, GAT11, Spec-GN78, PNA79, GatedGCN52, GPS25, MPNN51,
SAN23, DGN80, and Graphormer39. According to Table V,
MGT + WavePE outperforms 7 out of 10 other baselines.

E. Ablation study

The ablation study, presented in Figure 8, is designed to
explore the role of the number of clusters for our proposed
multiscale learning method. In particular, we conduct
experiments by varying the number of clusters C when
learning on polymer datasets across three properties, i.e.
GAP, HOMO, and LUMO. The implications suggest that
increasing the number of clusters consistently leads to superior
performances across all properties. This is due to the fact that
macromolecules like polymers are constituted by repeating
units, and increasing the number of clusters may break this
inductive bias. Furthermore, the plots also demonstrate that
using predefined numbers of clusters can lead to unstable
performance across all tasks. As datasets grow larger, different
molecules exhibit diverse substructures. Consequently, using
a fixed number of clusters for all data samples may not be
sufficient for effective generalization. This paves the way for
future research to determine the specific number of clusters for
each molecule adaptively in a data-driven manner.
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F. Visualization

We use the t-SNE algorithm81 to project the representations
produced by MGT (with WavePE) of peptides and polymers of
the test datasets into two-dimensional spaces for visualization.
Also, we take the probabilistic clustering matrix S in
Equation (14) to visualize the clustering results on the
molecules. Specifically, we use the RDKit package (open-
source cheminformatics: https://www.rdkit.org) to draw
the molecules. Figures 10 and 9 show clear and smooth
clustering patterns in low-dimensional spaces that indicate our
proposed approaches are able to learn meaningful molecular
representations for hierarchical structures such as peptides and
polymers. Furthermore, according to Figures 6 and 7, our
learning-to-cluster algorithm and multiresolution analysis can
pick up functional groups (for proteins/peptides) and repeating
units (for polymers) via back-propagation.

G. Implementation Details

Hyperparameters Values

No. Epoch 200
Embedding Dimension 84
Batch size 128
Learning rate 0.001
Dropout 0.25
Attention Dropout 0.5
Diffusion Step (k) [1, 2, 3, 4, 5]
No. Head 4
Activation ReLU
Normalization Batchnorm
No. Cluster 10
λ1 0.001
λ2 0.001

TABLE VI: The hyperparameters for MGT

In this section, we elaborate on the architecture and
hyperparameters used to train and evaluate our MGT to achieve
the above numerical results. Table VI shows details of the
hyperparameters used for MGT in all the experiments. In
particular, we use the atom and bond encoder modules provided
by OGB82 to attribute the molecular graph. To compute
the wavelet tensors, we define a set of diffusion steps k (i.e.
scales). Intuitively, the determination of these scales involves
progressively expanding the number of hops around the central
nodes, thereby effectively capturing and quantifying the extent
to which information spreads throughout the graph. We use
two GPS layers to compute the atom-level embeddings and
two Transformer layers for calculating the substructure-level
embeddings. For learning to cluster, we use a 2-layer message-
passing network to compute Z and S mentioned in Eq. (13)

(14) as follows:

Z1
a,E

1
a = GatedGCN1(Xa,Ea,A), (22)

Z1
a = Batchnorm(ReLU(Z1

a)), (23)

Z2
a,E

2
a = GatedGCN2(Z1

a,E
1
a,A), (24)

Z2
a = Batchnorm(ReLU(Z2

a)), (25)

Z = concat(Z1
a,Z

2
a), (26)

Z = FFN(Z), (27)

in which S is computed similarly with an auxiliary Softmax
operation on the output to produce a probabilistic clustering
matrix.

VIII. CONCLUSION

In this paper, we introduce a novel architecture,
Multiresolution Graph Transformer (MGT), that is able to
learn and capture the molecular structure of macromolecules
at multiple levels of resolution. We utilize the popular
Transformer architecture to model the long-range atomic
interaction. Our proposed model employs a learning-to-
cluster algorithm that is trainable via back-propagation in
order to construct the hierarchy of coarse-graining graphs (i.e.
multiresolution) while detecting important functional groups.
Furthermore, to empower MGT, we propose a new atomic
positional encoding named WavePE based on multiresolution
analysis and wavelet theory. We have shown competitive
experimental results on three macromolecule datasets of
polymers, peptides, and protein-ligand complexes, and one
small molecule dataset of drug-like compounds. Noticeably,
our model achieves the chemical accuracy in approximating the
density functional theory (DFT) calculation and outperforms
other state-of-the-art graph learning methods in the polymers
dataset. We have released our software and data publicly. We
believe our model and implementation will certainly advance
the field of DFT approximation for large-scale molecular
structures and allow several downstream applications in drug
discovery and materials science.
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