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Abstract

We propose Cormorant, a rotationally covariant neural network architecture for learning
the behavior and properties of complex many-body physical systems. We apply these
networks to molecular systems with two goals: learning atomic potential energy surfaces
for use in Molecular Dynamics simulations, and learning ground state properties of
molecules calculated by Density Functional Theory. Some of the key features of our
network are that (a) each neuron explicitly corresponds to a subset of atoms; (b) the
activation of each neuron is covariant to rotations, ensuring that overall the network is
fully rotationally invariant. Furthermore, the non-linearity in our network is based upon
tensor products and the Clebsch-Gordan decomposition, allowing the network to operate
entirely in Fourier space. Cormorant significantly outperforms competing algorithms
in learning molecular Potential Energy Surfaces from conformational geometries in the
MD-17 dataset, and is competitive with other methods at learning geometric, energetic,
electronic, and thermodynamic properties of molecules on the GDB-9 dataset.

Learning on Molecules

We want to learn on molecular data specified by a set of charge-position pairs (Zi, ri)
for each atom.

This problem is invariant to rotations and translations. We use covariant activations to
“bake-in” these symmetries, while retaining local geometric information.

The multipole expansion

Let’s take inspiration from the multipole expansion in physics. Expanding the potential
V (r) around a point r gives:

monopole: dipole: quadrupole:∑
i

Zi
|r−ri|

= Q0Y
0(r̂)/r+ Q1Y

1(r̂)/r2+ Q2Y
2(r̂)/r3 + . . .

Here Q` is the `-th multipole moment, and Y `(r̂) is a spherical harmonic.

Consider the effects of a 90◦ CCW-rotation on the input charges and corresponding
moments.

All moments rotate covariantly. More precisely, given a rotation R ∈ SO(3), each

moment rotates as Q`→ D`(R) ·Q`, where D` : SO(3)→ C(2`+1)×(2`+1) is a Wigner-
D matrix or irreducible representation (irrep) of the group SO(3) labeled by positive
integer ` = 0, 1, 2, . . ..

Spherical tensors and representation theory

Physical quantities transform under rotation R:

q 7−→ q µ 7−→ Rµ Θ 7−→ RΘRT rAB 7−→ RrAB

In general, a k’th order Cartesian moment tensor T (k) ∈ R3×3×...×3 (or its flattened

T
(k) ∈ R3k) transforms as:

T
(k) 7−→ (R⊗R⊗ ...⊗R)T

(k)

In the specific case of SO(3), there is a fixed unitary transformation matrix C(k) which
reduces the k’th order rotation operator into a direct sum of irreps:

R⊗R⊗ ...⊗R︸ ︷︷ ︸
k

= C(k)
[⊕

`

τ⊕̀
i=1

D`(R)

]
C(k)†

The vectorized form of the Cartesian moment tensor T
(k)

has a corresponding decom-
position:

T
(k)

= C(k)
[⊕

`

τ⊕̀
i=1

Q`,i

]
Under rotations, the individual Q`,i components transform independently as Q`,i 7→
D`(R)Q`,i. For example, in the dipole/dipole case, we need terms of the form QA`1

⊗QB`2
that transform according to the tensor product of the corresponding irreps:

QA`1 ⊗Q
B
`2
7→ (D`1(R)⊗D`2(R))(QA`1 ⊗Q

B
`2

)

in which D`1(R)⊗D`2(R) is not an irreducible representation, but can be decomposed
into irreducibles by Clebsh - Gordan decomposition:

D`1(R)⊗D`2(R) = C
†
`1,`2

[ `1+`2⊕
`=|`1−`2|

D`(R)

]
C`1,`2

Covariant molecular neural network

Definition 1. We say that F is an SO(3) - covariant vector of type
τ = (τ0, τ1, τ2, ..., τL) if it can be written as a collection of complex matrices
F0, F1, .., FL, called its isotypic parts, where each F` is a matrix of size (2` + 1) × τ`
and transforms under rotations as F` 7→ D`(R)F`.

Definition 2. Let S be a molecule or other physical system consisting of N
atoms. A Cormorant covariant molecular neural network for S is a feed forward
neural network consisting of m neurons n1, .., nm such that:

• Every neuron ni corresponds to some subset Si of the atoms. In particular, each
input neuron corresponds to a single atom. Each output neuron corresponds to
the entire system S.

• The activation of each ni is an SO(3) - vector of a fixed type τi.

• The type of each output neuron is τout = (1), i.e., a scalar.

Clebsch-Gordan Layers

Cormorant is based upon the Clebsch-Gordan layer. We use covariant SO(3)-vectors

F si =
⊕L

`=0

⊕
c[F`]

s
c,i as activations for each atom i at layer s.

The Clebsch-Gordan decomposition is the central operation in our network:

[F`1 ⊗cg G`2]`∗,i =

`1+`2⊕
`=`1−`2

C`1,`2,`[F`1]∗,i ⊗ [G`2]∗,i.

Using this operation, we update our activations in a two-step process. Atom activations
are updated using:

F si =
[
F s−1
i ⊕

(
F s−1
i ⊗cg F

s−1
i

)︸ ︷︷ ︸
one-body part

⊕
(∑

j

Gsi,j ⊗cg F
s−1
j

)
︸ ︷︷ ︸

two-body part

]
·W vertex

s,` ,

where W vertex
s,` is a set of learnable weights. Note that the form of the CG non-linearity

is enforced by group theory. Any other covariant non-linearity must be either composed
of CG operations, or scalars.

The SO(3)-vector edge activations [4] G
s,`
i,j = g

s,`
i,jY

`(r̂ij) are constructed from the

spherical harmonics Y `(r̂ij) of the relative position vector ri,j = ri−rj between atoms

i and j, along with the scalar edge network g
s,`
i,j . Specifically,

g
s,`
i,j = µs(ri,j)

[(
g
s−1,`
i,j ⊕

(
F s−1
i · F s−1

j

)
⊕ ηs,`(ri,j)

)
·W edge

s,`

]
,

where µs(ri,j) is a learnable mask, ηs,`(ri,j) is a set of learnable radial basis functions

of the relative distance ri,j, and W
edge
s,` are learnable weights.

Experiments

We present experimental results on two datasets of interest to the computational
chemistry community: QM-9 [1] for learning the ground state properties of a set
of molecules, and MD-17 [2] for learning molecular force fields and potential energy
surfaces.

Our code is available at https://github.com/risilab/cormorant.

Table 1. GDB-9 results

Cormorant SchNet [3] NMP [4] WaveScatt [5]

α (bohr3) 0.085 0.235 0.092 0.160
∆ε (eV) 0.061 0.063 0.069 0.118

εHOMO (eV) 0.034 0.041 0.043 0.085
εLUMO (eV) 0.038 0.034 0.038 0.076

µ (D) 0.038 0.033 0.030 0.340
Cv (cal/mol K) 0.026 0.033 0.040 0.049

G (eV) 0.020 0.014 0.019 0.022
H (eV) 0.021 0.014 0.017 0.022

R2 (bohr2) 0.961 0.073 0.180 0.410
U (eV) 0.021 0.019 0.020 0.022
U0 (eV) 0.022 0.014 0.020 0.022

ZPVE (meV) 2.027 1.700 1.500 2.000

Table 2. MD-17 results

Cormorant DeepMD [6] DTNN [7] SchNet [3] GDML [2] sGDML [8]
Aspirin 0.098 0.201 – 0.120 0.270 0.190
Benzene 0.023 0.065 0.040 0.070 0.070 0.100
Ethanol 0.027 0.055 – 0.050 0.150 0.070

Malonaldehyde 0.041 0.092 0.190 0.080 0.160 0.100
Naphthalene 0.029 0.095 – 0.110 0.120 0.120
Salicylic Acid 0.066 0.106 0.410 0.100 0.120 0.120

Toluene 0.034 0.085 0.180 0.090 0.120 0.100
Uracil 0.023 0.085 – 0.100 0.110 0.110
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